Menu Close

Let-a-b-c-0-Prove-that-1-8-2-a-2-b-2-c-1-a-1-b-1-c-4-a-b-c-4-a-b-c-




Question Number 140997 by loveineq last updated on 14/May/21
Let a,b,c ≥ 0. Prove that                (1/8)∙(((2+a)(2+b)(2+c))/((1+a)(1+b)(1+c))) ≥ ((4−a−b−c)/(4+a+b+c))
$$\mathrm{Let}\:{a},{b},{c}\:\geqslant\:\mathrm{0}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{8}}\centerdot\frac{\left(\mathrm{2}+{a}\right)\left(\mathrm{2}+{b}\right)\left(\mathrm{2}+{c}\right)}{\left(\mathrm{1}+{a}\right)\left(\mathrm{1}+{b}\right)\left(\mathrm{1}+{c}\right)}\:\geqslant\:\frac{\mathrm{4}−{a}−{b}−{c}}{\mathrm{4}+{a}+{b}+{c}}\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$
Commented by MJS_new last updated on 15/May/21
as easy as the last one  all denominators are >0 ⇒ just multiplicate  and subtract rhs from both sides ⇒ only  positive terms on lhs
$$\mathrm{as}\:\mathrm{easy}\:\mathrm{as}\:\mathrm{the}\:\mathrm{last}\:\mathrm{one} \\ $$$$\mathrm{all}\:\mathrm{denominators}\:\mathrm{are}\:>\mathrm{0}\:\Rightarrow\:\mathrm{just}\:\mathrm{multiplicate} \\ $$$$\mathrm{and}\:\mathrm{subtract}\:\mathrm{rhs}\:\mathrm{from}\:\mathrm{both}\:\mathrm{sides}\:\Rightarrow\:\mathrm{only} \\ $$$$\mathrm{positive}\:\mathrm{terms}\:\mathrm{on}\:\mathrm{lhs} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *