Menu Close

Let-a-b-c-be-positive-constants-Among-all-real-number-x-and-y-satisfying-ax-by-c-find-the-maximum-value-of-product-xy-




Question Number 138797 by bramlexs22 last updated on 18/Apr/21
Let a,b,c be positive constants.  Among all real number x and y   satisfying ax+by=c , find the  maximum value of product  xy.
Leta,b,cbepositiveconstants.Amongallrealnumberxandysatisfyingax+by=c,findthemaximumvalueofproductxy.
Answered by TheSupreme last updated on 18/Apr/21
if b=0 or a=0 xy is unlimited  else: y=−(a/b)x−(c/b)  (a/b)=m   (c/b)=q  y=−mx−q  σ=xy=x(mx+q)=−mx^2 −qx=−x(mx+q)  (∂σ/∂x)=−2mx−q=0 →x=−(q/(2m))  σ_(max) =(q/(2m))((q/2))=(q^2 /(4m))=(c^2 /(4ab))
ifb=0ora=0xyisunlimitedelse:y=abxcbab=mcb=qy=mxqσ=xy=x(mx+q)=mx2qx=x(mx+q)σx=2mxq=0x=q2mσmax=q2m(q2)=q24m=c24ab
Answered by EDWIN88 last updated on 18/Apr/21
without calculus.  let  { ((ax = u)),((by = v)) :} ⇒ u+v = c ; so u.v minimum  where  { ((u=(c/2))),((v=(c/2))) :} then (uv)_(min) = (c^2 /4)  ⇒(ax.by)_(min) = (c^2 /4) or xy_(min)  = (c^2 /(4ab)).
withoutcalculus.let{ax=uby=vu+v=c;sou.vminimumwhere{u=c2v=c2then(uv)min=c24(ax.by)min=c24orxymin=c24ab.

Leave a Reply

Your email address will not be published. Required fields are marked *