Menu Close

Let-a-b-c-be-the-lengths-of-the-sides-of-a-triangle-Show-that-abc-a-b-c-b-c-a-c-a-b-




Question Number 7883 by 314159 last updated on 23/Sep/16
Let a,b,c be the lengths of the sides of a triangle.  Show that abc≥(a+b−c)(b+c−a)(c+a−b).
Leta,b,cbethelengthsofthesidesofatriangle.Showthatabc(a+bc)(b+ca)(c+ab).
Commented by sou1618 last updated on 23/Sep/16
  x=a+b−c>0  y=c+a−b>0    a,b,c :length of triangle  z=b+c−a>0    x+y≥2(√(xy))>0  y+z≥2(√(yz))>0  z+x≥2(√(zx))>0    (x+y)(y+z)(z+x)≥8xyz  (2a)×(2c)×(2b)≥8(a+b−c)(c+a−b)(b+c−a)  abc≥(a+b−c)(b+c−a)(c+a−b) .
x=a+bc>0y=c+ab>0a,b,c:lengthoftrianglez=b+ca>0x+y2xy>0y+z2yz>0z+x2zx>0(x+y)(y+z)(z+x)8xyz(2a)×(2c)×(2b)8(a+bc)(c+ab)(b+ca)abc(a+bc)(b+ca)(c+ab).
Commented by sou1618 last updated on 23/Sep/16
when...    abc=(a+b−c)(b+c−a)(c+a−b)    ⇔x=y=z    ⇔ { ((a+b−c=b+c−a)),((b+c−a=c+a−b)),((c+a−b=a+b−c)) :}    ⇔a=b=c
whenabc=(a+bc)(b+ca)(c+ab)x=y=z{a+bc=b+cab+ca=c+abc+ab=a+bca=b=c
Commented by Rasheed Soomro last updated on 23/Sep/16
Nice!
Nice!
Answered by prakash jain last updated on 02/Oct/16
see comments
seecomments

Leave a Reply

Your email address will not be published. Required fields are marked *