Question Number 142914 by loveineq last updated on 07/Jun/21
$$\mathrm{Let}\:{a}\geqslant{b}\geqslant{c}\geqslant{d}>\mathrm{0}\:\mathrm{and}\:{a}+{b}+{c}+{d}\:=\:\mathrm{4}. \\ $$$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\sqrt{{a}}+\sqrt{{b}}+\sqrt{{c}}}{\mathrm{3}}\:\leqslant\:\frac{\mathrm{1}}{\:\sqrt{{d}}} \\ $$$$\mathrm{Prove}\:\mathrm{if}\:\forall{n}\in\mathbb{N}^{+} ,\:\mathrm{then} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\sqrt[{{n}}]{{a}}+\sqrt[{{n}}]{{b}}+\sqrt[{{n}}]{{c}}}{\mathrm{3}}\:\leqslant\:\frac{\mathrm{1}}{\:\sqrt[{{n}}]{{d}}} \\ $$$$ \\ $$