Menu Close

Let-a-b-c-gt-0-and-c-2-ab-bc-ca-3-Prove-that-a-3-b-3-2c-3-a-3-b-3-c-3-3-a-2-b-2-2c-2-a-2-b-2-c-2-




Question Number 78340 by loveineq. last updated on 16/Jan/20
Let  a,b,c > 0  and  c^2  = ((ab+bc+ca)/3) . Prove that                 ((a^3 +b^3 −2c^3 )/(a^3 +b^3 +c^3 )) ≤ 3(((a^2 +b^2 −2c^2 )/(a^2 +b^2 +c^2 )))
Leta,b,c>0andc2=ab+bc+ca3.Provethata3+b32c3a3+b3+c33(a2+b22c2a2+b2+c2)
Answered by MJS last updated on 16/Jan/20
(a^3 +b^3 −2c^3 )(a^2 +b^2 +c^2 )≤3(a^2 +b^2 −2c^2 )(a^3 +b^3 +c^3 )  ⇒  2(a^5 +b^5 )−7c^2 (a^3 +b^3 )+5c^3 (a^2 +b^2 )+2a^2 b^2 (a+b)−4c^5 ≥0  let a=pc∧b=qc  (2(p^5 +q^5 )+2p^2 q^2 (p+q)−7(p^3 +q^3 )+5(p^2 +q^2 )−4)c^5 ≥0  2(p^5 +q^5 )+2p^2 q^2 (p+q)−7(p^3 +q^3 )+5(p^2 +q^2 )−4≥0    3c^2 =ab+ac+bc  3c^2 =(p+pq+q)c^2  ⇒ q=((3−p)/(1+p))    ((2p^(10) +10p^9 +15p^8 −18p^7 −33p^6 −12p^5 −33p^4 −90p^3 +735p^2 −914p+338)/((p+1)^5 ))≥0  (p−1)^2 (2p^8 +14p^7 +41p^6 +50p^5 +26p^4 −10p^3 −79p^2 −238p+338)≥0  no other real linear factors  with p=1 lhs=0  with p<>1 lhs>0  ⇒ proven
(a3+b32c3)(a2+b2+c2)3(a2+b22c2)(a3+b3+c3)2(a5+b5)7c2(a3+b3)+5c3(a2+b2)+2a2b2(a+b)4c50leta=pcb=qc(2(p5+q5)+2p2q2(p+q)7(p3+q3)+5(p2+q2)4)c502(p5+q5)+2p2q2(p+q)7(p3+q3)+5(p2+q2)403c2=ab+ac+bc3c2=(p+pq+q)c2q=3p1+p2p10+10p9+15p818p733p612p533p490p3+735p2914p+338(p+1)50(p1)2(2p8+14p7+41p6+50p5+26p410p379p2238p+338)0nootherreallinearfactorswithp=1lhs=0withp<>1lhs>0proven
Answered by loveineq. last updated on 16/Jan/20
Thanks MJS
ThanksMJS

Leave a Reply

Your email address will not be published. Required fields are marked *