Menu Close

let-a-b-c-IR-show-that-a-b-a-c-2-abc-a-b-c-




Question Number 71633 by mind is power last updated on 18/Oct/19
let a,b,c ∈IR_+   show that (a+b)(a+c)≥2(√(abc(a+b+c)))
leta,b,cIR+showthat(a+b)(a+c)2abc(a+b+c)
Answered by MJS last updated on 18/Oct/19
a>0∧b>0∧c>0 ⇒ (a+b)(a+c)>0∧abc(a+b+c)>0  ⇒ we are allowed to square  (a+b)^2 (a+c)^2 ≥4abc(a+b+c)  (a+b)^2 (a+c)^2 −4abc(a+b+c)≥0  (a−b)^2 c^2 +2a(a−b)(a+b)c+a^2 (a+b)^2 ≥0  ((a−b)c+a(a+b))^2 ≥0  true ∀ a, b, c ∈R^+
a>0b>0c>0(a+b)(a+c)>0abc(a+b+c)>0weareallowedtosquare(a+b)2(a+c)24abc(a+b+c)(a+b)2(a+c)24abc(a+b+c)0(ab)2c2+2a(ab)(a+b)c+a2(a+b)20((ab)c+a(a+b))20truea,b,cR+
Commented by mind is power last updated on 18/Oct/19
(a+b)(a+c)≥4abc(a+b+c) y′re methode worck nice sir
(a+b)(a+c)4abc(a+b+c)yremethodeworcknicesir
Commented by MJS last updated on 18/Oct/19
corrected, it was just a typo
corrected,itwasjustatypo

Leave a Reply

Your email address will not be published. Required fields are marked *