Menu Close

Let-a-b-c-R-and-a-b-b-c-1-where-0-lt-b-1-Prove-that-a-b-b-c-a-b-b-c-2-




Question Number 78351 by loveineq. last updated on 16/Jan/20
Let  a,b,c ∈ R^+   and  (a+b)(b+c) = 1 , where  0 <b≤ 1 .  Prove that  ∣a−b∣∣b−c∣ ≥ ((∣(√a)−(√b)∣∣(√b)−(√c)∣)/2) .
$$\mathrm{Let}\:\:{a},{b},{c}\:\in\:\mathrm{R}^{+} \:\:\mathrm{and}\:\:\left({a}+{b}\right)\left({b}+{c}\right)\:=\:\mathrm{1}\:,\:\mathrm{where}\:\:\mathrm{0}\:<{b}\leqslant\:\mathrm{1}\:. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\:\mid{a}−{b}\mid\mid{b}−{c}\mid\:\geqslant\:\frac{\mid\sqrt{{a}}−\sqrt{{b}}\mid\mid\sqrt{{b}}−\sqrt{{c}}\mid}{\mathrm{2}}\:. \\ $$
Commented by loveineq. last updated on 19/Jan/20
More stronger is  ∣a−b∣∣b−c∣ ≥ ∣(√a)−(√b)∣∣(√b)−(√c)∣ .
$$\mathrm{More}\:\mathrm{stronger}\:\mathrm{is}\:\:\mid{a}−{b}\mid\mid{b}−{c}\mid\:\geqslant\:\mid\sqrt{{a}}−\sqrt{{b}}\mid\mid\sqrt{{b}}−\sqrt{{c}}\mid\:. \\ $$
Answered by mind is power last updated on 16/Jan/20
x−y=((√x)−(√y))((√x)+(√y))  ⇒∣a−b∣∣b−c∣=∣(√a)−(√b)∣∣(√b)−(√c)∣((√a)+(√b))((√b)+(√c))  (√x)+(√y)  ≥((√(x+y))/( (√2)))  proof⇔2(x+y+2(√(xy)))≥x+y  ⇔x+y+4(√(xy))≥0 True  ((√a)+(√b))((√b)+(√c))≥(((√(a+b)).(√(b+c)))/2)=((√((a+b)(b+c)))/2)=(1/2)  ⇒∣(√a)−(√b)∣∣(√b)−(√c)∣((√a)+(√b))((√b)+(√c))≥((∣(√a)−(√(b∣))∣(√b)−(√c)∣)/2)
$$\mathrm{x}−\mathrm{y}=\left(\sqrt{\mathrm{x}}−\sqrt{\mathrm{y}}\right)\left(\sqrt{\mathrm{x}}+\sqrt{\mathrm{y}}\right) \\ $$$$\Rightarrow\mid\mathrm{a}−\mathrm{b}\mid\mid\mathrm{b}−\mathrm{c}\mid=\mid\sqrt{\mathrm{a}}−\sqrt{\mathrm{b}}\mid\mid\sqrt{\mathrm{b}}−\sqrt{\mathrm{c}}\mid\left(\sqrt{\mathrm{a}}+\sqrt{\mathrm{b}}\right)\left(\sqrt{\mathrm{b}}+\sqrt{\mathrm{c}}\right) \\ $$$$\sqrt{\mathrm{x}}+\sqrt{\mathrm{y}}\:\:\geqslant\frac{\sqrt{\mathrm{x}+\mathrm{y}}}{\:\sqrt{\mathrm{2}}}\:\:\mathrm{proof}\Leftrightarrow\mathrm{2}\left(\mathrm{x}+\mathrm{y}+\mathrm{2}\sqrt{\mathrm{xy}}\right)\geqslant\mathrm{x}+\mathrm{y} \\ $$$$\Leftrightarrow\mathrm{x}+\mathrm{y}+\mathrm{4}\sqrt{\mathrm{xy}}\geqslant\mathrm{0}\:\mathrm{True} \\ $$$$\left(\sqrt{\mathrm{a}}+\sqrt{\mathrm{b}}\right)\left(\sqrt{\mathrm{b}}+\sqrt{\mathrm{c}}\right)\geqslant\frac{\sqrt{\mathrm{a}+\mathrm{b}}.\sqrt{\mathrm{b}+\mathrm{c}}}{\mathrm{2}}=\frac{\sqrt{\left(\mathrm{a}+\mathrm{b}\right)\left(\mathrm{b}+\mathrm{c}\right)}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\mid\sqrt{\mathrm{a}}−\sqrt{\mathrm{b}}\mid\mid\sqrt{\mathrm{b}}−\sqrt{\mathrm{c}}\mid\left(\sqrt{\mathrm{a}}+\sqrt{\mathrm{b}}\right)\left(\sqrt{\mathrm{b}}+\sqrt{\mathrm{c}}\right)\geqslant\frac{\mid\sqrt{\mathrm{a}}−\sqrt{\mathrm{b}\mid}\mid\sqrt{\mathrm{b}}−\sqrt{\mathrm{c}}\mid}{\mathrm{2}} \\ $$
Answered by loveineq. last updated on 16/Jan/20
Thanks sir
$$\mathrm{Thanks}\:\mathrm{sir} \\ $$
Commented by mind is power last updated on 19/Jan/20
y′re Welcom
$$\mathrm{y}'\mathrm{re}\:\mathrm{Welcom} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *