Menu Close

Let-a-b-c-R-and-a-b-b-c-1-where-0-lt-b-1-Prove-that-a-b-b-c-a-b-b-c-2-




Question Number 78351 by loveineq. last updated on 16/Jan/20
Let  a,b,c ∈ R^+   and  (a+b)(b+c) = 1 , where  0 <b≤ 1 .  Prove that  ∣a−b∣∣b−c∣ ≥ ((∣(√a)−(√b)∣∣(√b)−(√c)∣)/2) .
Leta,b,cR+and(a+b)(b+c)=1,where0<b1.Provethatab∣∣bcab∣∣bc2.
Commented by loveineq. last updated on 19/Jan/20
More stronger is  ∣a−b∣∣b−c∣ ≥ ∣(√a)−(√b)∣∣(√b)−(√c)∣ .
Morestrongerisab∣∣bcab∣∣bc.
Answered by mind is power last updated on 16/Jan/20
x−y=((√x)−(√y))((√x)+(√y))  ⇒∣a−b∣∣b−c∣=∣(√a)−(√b)∣∣(√b)−(√c)∣((√a)+(√b))((√b)+(√c))  (√x)+(√y)  ≥((√(x+y))/( (√2)))  proof⇔2(x+y+2(√(xy)))≥x+y  ⇔x+y+4(√(xy))≥0 True  ((√a)+(√b))((√b)+(√c))≥(((√(a+b)).(√(b+c)))/2)=((√((a+b)(b+c)))/2)=(1/2)  ⇒∣(√a)−(√b)∣∣(√b)−(√c)∣((√a)+(√b))((√b)+(√c))≥((∣(√a)−(√(b∣))∣(√b)−(√c)∣)/2)
xy=(xy)(x+y)⇒∣ab∣∣bc∣=∣ab∣∣bc(a+b)(b+c)x+yx+y2proof2(x+y+2xy)x+yx+y+4xy0True(a+b)(b+c)a+b.b+c2=(a+b)(b+c)2=12⇒∣ab∣∣bc(a+b)(b+c)abbc2
Answered by loveineq. last updated on 16/Jan/20
Thanks sir
Thankssir
Commented by mind is power last updated on 19/Jan/20
y′re Welcom
yreWelcom

Leave a Reply

Your email address will not be published. Required fields are marked *