Menu Close

Let-a-b-R-Show-that-a-b-a-b-




Question Number 1543 by 112358 last updated on 17/Aug/15
Let a, b∈R. Show that                  ∣∣a∣−∣b∣∣≤∣a−b∣.
Leta,bR.Showthat∣∣ab∣∣⩽∣ab.
Answered by Rasheed Soomro last updated on 18/Aug/15
Alternative way , technically simpler.  ∣∣a∣−∣b∣∣≤∣a−b∣......................(I)  Let ∣a∣ = x    and      ∣b∣ = y   ,  Clearly  x,y≥0  ∣a∣=x ⇒ a=±x   and     ∣b∣=±y  By substituting in (I) we have four simpler  inequalities:           ∣ x−y ∣≤ ∣ (+x)−(+y) ∣= ∣ x−y ∣......................(II)                         ≤ ∣ (+x)−(−y) ∣=∣ x+y ∣.......(III)                          ≤∣ (−x)−(+y) ∣=∣−(x+y)∣= ∣ x+y ∣..........(IV)                          ≤∣ (−x)−(−y) ∣=∣ −(x−y) ∣= ∣ x−y ∣ .....(V)  (II)   and  (V)    are obvious.For (III) and (IV) we  proceed as follow           x−y≤x+y   for x and y are both +ve.     ∴  ∣ x−y ∣ ≤ ∣x + y∣  Since (II) ,  (III) , (IV) and (V) are true. It implies that                      ∣∣a∣−∣b∣∣≤∣a−b∣
Alternativeway,technicallysimpler.∣∣ab∣∣⩽∣ab.(I)Leta=xandb=y,Clearlyx,y0a∣=xa=±xandb∣=±yBysubstitutingin(I)wehavefoursimplerinequalities:xy∣⩽(+x)(+y)∣=xy.(II)(+x)(y)∣=∣x+y.(III)⩽∣(x)(+y)∣=∣(x+y)∣=x+y.(IV)⩽∣(x)(y)∣=∣(xy)∣=xy..(V)(II)and(V)areobvious.For(III)and(IV)weproceedasfollowxyx+yforxandyareboth+ve.xyx+ySince(II),(III),(IV)and(V)aretrue.Itimpliesthat∣∣ab∣∣⩽∣ab
Answered by 123456 last updated on 17/Aug/15
we have that  0≤∣a+b∣≤∣a∣+∣b∣  0≤∣a+(b−a)∣≤∣a∣+∣b−a∣⇒−∣a∣≤∣b−a∣  0≤∣b∣≤∣a∣+∣b−a∣⇒∣a∣≤∣a+b∣≤∣a∣+∣b∣≤2∣a∣+∣b−a∣  −∣a∣≤∣b∣−∣a∣≤∣b−a∣  we have  −∣a∣≤∣a∣≤∣b−a∣⇒−∣b−a∣≤−∣a∣≤∣a∣  −∣b−a∣≤−∣a∣≤∣b∣−∣a∣≤∣b−a∣  ∣∣b∣−∣a∣∣≤∣b−a∣
wehavethat0⩽∣a+b∣⩽∣a+b0⩽∣a+(ba)∣⩽∣a+ba∣⇒a∣⩽∣ba0⩽∣b∣⩽∣a+ba∣⇒∣a∣⩽∣a+b∣⩽∣a+b∣⩽2a+baa∣⩽∣ba∣⩽∣bawehavea∣⩽∣a∣⩽∣ba∣⇒ba∣⩽a∣⩽∣aba∣⩽a∣⩽∣ba∣⩽∣ba∣∣ba∣∣⩽∣ba

Leave a Reply

Your email address will not be published. Required fields are marked *