Menu Close

Let-a-belongs-to-an-interval-A-k-is-aconstant-such-that-k-R-and-k-lt-a-Find-out-A-in-case-a-k-a-k-a-k-a-k-




Question Number 1738 by Rasheed Sindhi last updated on 08/Sep/15
Let a belongs to an interval A,k is aconstant such that   k∈R^+  and k<a .  Find out A in case:          ( a−k)^(a+k) ≥(a+k)^(a−k)
$${Let}\:\boldsymbol{\mathrm{a}}\:{belongs}\:{to}\:{an}\:{interval}\:\boldsymbol{\mathrm{A}},\boldsymbol{\mathrm{k}}\:{is}\:{aconstant}\:{such}\:{that}\: \\ $$$$\boldsymbol{\mathrm{k}}\in\mathbb{R}^{+} \:{and}\:\boldsymbol{\mathrm{k}}<\boldsymbol{\mathrm{a}}\:. \\ $$$${Find}\:{out}\:\boldsymbol{\mathrm{A}}\:{in}\:{case}: \\ $$$$\:\:\:\:\:\:\:\:\left(\:\boldsymbol{\mathrm{a}}−\boldsymbol{\mathrm{k}}\right)^{\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{k}}} \geqslant\left(\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{k}}\right)^{\boldsymbol{\mathrm{a}}−\boldsymbol{\mathrm{k}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *