Menu Close

Let-a-gt-0-and-z-1-z-a-z-0-is-a-complex-number-Then-the-maximum-and-minimum-values-of-z-are-A-a-a-2-4-2-B-2a-a-2-4-2-C-a-2-4-




Question Number 140198 by EnterUsername last updated on 05/May/21
Let a>0 and ∣z+(1/z)∣=a (z≠0 is a complex number).  Then the maximum and minimum values of ∣z∣ are  (A) ((a+(√(a^2 +4)))/2)                                  (B) ((2a+(√(a^2 +4)))/2)  (C) (((√(a^2 +4))−a)/2)                                  (D) (((√(a^2 +4))−2a)/2)
Leta>0andz+(1/z)∣=a(z0isacomplexnumber).Thenthemaximumandminimumvaluesofzare(A)a+a2+42(B)2a+a2+42(C)a2+4a2(D)a2+42a2
Answered by Dwaipayan Shikari last updated on 05/May/21
∣z∣+∣(1/z)∣≥∣z+(1/z)∣  For Maximum ∣z+(1/z)∣=∣z∣+∣(1/z)∣  ∣z∣+(1/(∣z∣))=a⇒∣z∣=((a±(√(a^2 +4)))/2)  Maximum Value ∣z∣_(max) =((a+(√(a^2 +4)))/2)
z+1z∣⩾∣z+1zForMaximumz+1z∣=∣z+1zz+1z=a⇒∣z∣=a±a2+42MaximumValuezmax=a+a2+42
Commented by EnterUsername last updated on 05/May/21
Thanks !
Thanks!
Commented by mr W last updated on 05/May/21
∣(1/z)∣≠(1/(∣z∣))
1z∣≠1z
Answered by mr W last updated on 05/May/21
let z=re^(θi)   ∣z∣=r  (1/z)=(1/(re^(θi) ))=(1/r)e^(−θi)   ∣z+(1/z)∣=∣re^(θi) +(1/r)e^(−θi) ∣=(√(r^2 +(1/r^2 )+2cos 2θ))=a  r^2 +(1/r^2 )=a^2 −2cos 2θ=λ  max. or min. from r is when λ is  as large as possible, i.e. λ=a^2 +2, and  θ=(π/2).  r^4 −(a^2 +2)r^2 +1=0  ⇒r_(max/min) ^2 =((a^2 +2±(√((a^2 +2)^2 −4)))/2)  =((a^2 +2±a(√(a^2 +4)))/2)  =((a^2 +4±2a(√(a^2 +4))+a^2 )/4)  =((((√(a^2 +4)))^2 ±2a(√(a^2 +4))+a^2 )/4)  =((((√(a^2 +4))±a)^2 )/4)  ⇒r_(max/min) =(((√(a^2 +4))±a)/2)  i.e.  r_(max) =(((√(a^2 +4))+a)/2)  r_(min) =(((√(a^2 +4))−a)/2)
letz=reθiz∣=r1z=1reθi=1reθiz+1z∣=∣reθi+1reθi∣=r2+1r2+2cos2θ=ar2+1r2=a22cos2θ=λmax.ormin.fromriswhenλisaslargeaspossible,i.e.λ=a2+2,andθ=π2.r4(a2+2)r2+1=0rmax/min2=a2+2±(a2+2)242=a2+2±aa2+42=a2+4±2aa2+4+a24=(a2+4)2±2aa2+4+a24=(a2+4±a)24rmax/min=a2+4±a2i.e.rmax=a2+4+a2rmin=a2+4a2
Commented by EnterUsername last updated on 06/May/21
Thank you Sir

Leave a Reply

Your email address will not be published. Required fields are marked *