let-a-gt-b-gt-0-calculate-0-2pi-dx-a-bsinx-2- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 67525 by mathmax by abdo last updated on 28/Aug/19 leta>b>0calculate∫02πdx(a+bsinx)2 Commented by ~ À ® @ 237 ~ last updated on 29/Aug/19 letconsiderf(a,b)=∫02πdxa+bsinx=1b∫02πdxab+sinx∫02πdxc+sinx=2iπ∑∣zk∣<1Res(f(z),zk)withf(z)=1iz.1c+z−z−12i=2z2+2icz−1=2(z−z0)(z−z1)withz0=−i(c+c2−1)andz1=−i(c−c2−1)wehave∣z0∣>1and∣z1∣<1∫02πdxc+sinx=2iπ2z1−z0=2πc2−1Nowf(a,b)=1b.2π(ab)2−1=2πa2−b2∂f(a,b)∂a=∫02πdx(a+bsinx)2=2π−2a2a2−b2(a2−b2)=−4πa(a2−b2)32 Commented by mathmax by abdo last updated on 29/Aug/19 letf(a)=∫02πdxa+bsinxwehavef′(a)=−∫02πdx(a+bsinx)2⇒∫02πdx(a+bsinx)2=−f′(a)changementeix=zgivef(a)=∫∣z∣=1dziz{a+bz−z−12i}=∫∣z∣=12idziz{2ai+bz−bz−1}=∫∣z∣=12idz−2az+biz2−bi=∫∣z∣=12idz2i2az+biz2−bi=∫∣z∣=12dz2iaz+bz2−bletW(z)=2bz2+2iaz−bpolesofW?Δ′=−a2+b2=−(a2−b2)=(ia2−b2)2⇒z1=−ia+ia2−b2bandz2=−ia−ia2−b2b∣z1∣−1=∣−a+a2−b2∣b−1=a2−b2−ab−1=a2−b2−a−bb<0⇒∣z1∣<1wehavez1.z2=−1⇒∣z2∣=1∣z1∣>1∫∣z∣=1W(z)dz=2iπRes(W,z1)W(z)=2b(z−z1)(z−z2)⇒Res(W,z1)=2b(z1−z2)=2b2ia2−b2b=1ia2−b2⇒∫∣z∣=1W(z)dz=2iπ×1ia2−b2=2πa2−b2=f(a)f(a)=2π(a2−b2)−12⇒f′(a)=2π(−12)(a2−b2)−32=−π(a2−b2)−32⇒∫02πdx(a+bsinx)2=π(a2−b2)32 Commented by mathmax by abdo last updated on 29/Aug/19 erroratfinallinesf(a)=2π(a2−b2)−12⇒f′(a)=2π(−12)(2a)(a2−b2)−32=−2πa(a2−b2)32⇒∫02πdx(a+bsinx)2=2πa(a2−b2)32 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: x-2-f-x-f-x-2-f-x-Next Next post: calculate-1-x-2-1-x-4-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.