Menu Close

let-a-gt-b-gt-0-calculate-0-2pi-dx-a-bsinx-2-




Question Number 67525 by mathmax by abdo last updated on 28/Aug/19
let a>b>0 calculate ∫_0 ^(2π)   (dx/((a+bsinx)^2 ))
leta>b>0calculate02πdx(a+bsinx)2
Commented by ~ À ® @ 237 ~ last updated on 29/Aug/19
 let  consider  f(a,b)=∫_0 ^(2π)   (dx/(a+bsinx))   = (1/b) ∫_0 ^(2π) ((  dx)/((a/b) +sinx))    ∫_0 ^(2π) ((  dx)/(c+sinx)) =2iπΣ_(∣z_k ∣<1) Res(f(z),z_k )     with  f(z)=(1/(iz)) .(1/(c+((z−z^(−1) )/(2i))))=(2/( z^2 +2icz−1))=(2/((z−z_0 )(z−z_1 )))     with z_0 =−i(c+(√(c^2 −1  )) ) and  z_1 = −i(c−(√(c^2 −1)) )   we have  ∣z_0 ∣>1  and  ∣z_1 ∣<1   ∫_0 ^(2π)    (dx/(c+sinx))=2iπ (2/(z_1 −z_0 ))=((2π)/( (√(c^2 −1)) ))  Now   f(a,b)=(1/b).((2π)/( (√(((a/b))^2 −1)) ))=((2π)/( (√(a^2 −b^2 )) ))   ((∂f(a,b))/∂a)= ∫_0 ^(2π)    (dx/((a+bsinx)^2 )) =2π ((−((2a)/(2(√(a^2 −b^2 )) )))/((a^2 −b^2 )))=((−4πa)/((a^2 −b^2 )^(3/2) ))
letconsiderf(a,b)=02πdxa+bsinx=1b02πdxab+sinx02πdxc+sinx=2iπzk∣<1Res(f(z),zk)withf(z)=1iz.1c+zz12i=2z2+2icz1=2(zz0)(zz1)withz0=i(c+c21)andz1=i(cc21)wehavez0∣>1andz1∣<102πdxc+sinx=2iπ2z1z0=2πc21Nowf(a,b)=1b.2π(ab)21=2πa2b2f(a,b)a=02πdx(a+bsinx)2=2π2a2a2b2(a2b2)=4πa(a2b2)32
Commented by mathmax by abdo last updated on 29/Aug/19
let  f(a) =∫_0 ^(2π)  (dx/(a+bsinx))  we have f^′ (a) =−∫_0 ^(2π)  (dx/((a+bsinx)^2 )) ⇒  ∫_0 ^(2π)  (dx/((a+bsinx)^2 )) =−f^′ (a)  changement e^(ix)  =z give  f(a)=∫_(∣z∣=1)    (dz/(iz{a+b((z−z^(−1) )/(2i))})) =∫_(∣z∣=1)    ((2idz)/(iz{2ai +bz−bz^(−1) }))  =∫_(∣z∣=1)     ((2idz)/(−2az +biz^2  −bi)) =∫_(∣z∣=1)    ((2idz)/(2i^2 az +biz^2 −bi))  =∫_(∣z∣=1)     ((2dz)/(2iaz +bz^2 −b))  let W(z) =(2/(bz^2  +2iaz −b))  poles of W?  Δ^′ =−a^2 +b^2  =−(a^2 −b^2 )=(i(√(a^2 −b^2 )))^2  ⇒  z_1 =((−ia +i(√(a^2 −b^2 )))/b)  and z_2 =((−ia−i(√(a^2 −b^2 )))/b)  ∣z_1 ∣−1 =((∣−a+(√(a^2 −b^2 ))∣)/b)−1 =(((√(a^2 −b^2 ))−a)/b)−1 =(((√(a^2 −b^2 ))−a−b)/b)<0  ⇒∣z_1 ∣<1    we have  z_1 .z_2 =−1 ⇒∣z_2 ∣=(1/(∣z_1 ∣))>1  ∫_(∣z∣=1)    W(z)dz =2iπ Res(W,z_1 )  W(z) =(2/(b(z−z_1 )(z−z_2 ))) ⇒Res(W,z_1 ) =(2/(b(z_1 −z_2 ))) =(2/(b2i((√(a^2 −b^2 ))/b)))  =(1/(i(√(a^2 −b^2 )))) ⇒ ∫_(∣z∣=1)   W(z)dz =2iπ ×(1/(i(√(a^2 −b^2 )))) =((2π)/( (√(a^2 −b^2 )))) =f(a)  f(a) =2π(a^2 −b^2 )^(−(1/2))  ⇒f^′ (a) =2π(−(1/2))(a^2 −b^2 )^(−(3/2))   =−π (a^2 −b^2 )^(−(3/2))  ⇒ ∫_0 ^(2π)  (dx/((a+bsinx)^2 )) =(π/((a^2 −b^2 )^(3/2) ))
letf(a)=02πdxa+bsinxwehavef(a)=02πdx(a+bsinx)202πdx(a+bsinx)2=f(a)changementeix=zgivef(a)=z∣=1dziz{a+bzz12i}=z∣=12idziz{2ai+bzbz1}=z∣=12idz2az+biz2bi=z∣=12idz2i2az+biz2bi=z∣=12dz2iaz+bz2bletW(z)=2bz2+2iazbpolesofW?Δ=a2+b2=(a2b2)=(ia2b2)2z1=ia+ia2b2bandz2=iaia2b2bz11=a+a2b2b1=a2b2ab1=a2b2abb<0⇒∣z1∣<1wehavez1.z2=1⇒∣z2∣=1z1>1z∣=1W(z)dz=2iπRes(W,z1)W(z)=2b(zz1)(zz2)Res(W,z1)=2b(z1z2)=2b2ia2b2b=1ia2b2z∣=1W(z)dz=2iπ×1ia2b2=2πa2b2=f(a)f(a)=2π(a2b2)12f(a)=2π(12)(a2b2)32=π(a2b2)3202πdx(a+bsinx)2=π(a2b2)32
Commented by mathmax by abdo last updated on 29/Aug/19
error at final lines  f(a) =2π(a^2 −b^2 )^(−(1/2))  ⇒  f^′ (a) =2π(−(1/2))(2a)(a^2 −b^2 )^(−(3/2))  =((−2πa)/((a^2 −b^2 )^(3/2) )) ⇒  ∫_0 ^(2π)   (dx/((a +bsinx)^2 )) =((2πa)/((a^2 −b^2 )^(3/2) ))
erroratfinallinesf(a)=2π(a2b2)12f(a)=2π(12)(2a)(a2b2)32=2πa(a2b2)3202πdx(a+bsinx)2=2πa(a2b2)32

Leave a Reply

Your email address will not be published. Required fields are marked *