Menu Close

let-A-n-cos-2-n-x-x-2-3-2-dx-1-calculate-A-n-interms-of-n-2-find-nsture-of-the-serie-A-n-and-n-n-A-n-




Question Number 65679 by mathmax by abdo last updated on 01/Aug/19
let  A_n =∫_(−∞) ^(+∞)    ((cos(2^n x))/((x^2 +3)^2 ))dx  1) calculate A_n  interms of n  2)find nsture of the serie ΣA_n     and Σn^n  A_n
letAn=+cos(2nx)(x2+3)2dx1)calculateAnintermsofn2)findnstureoftheserieΣAnandΣnnAn
Commented by mathmax by abdo last updated on 02/Aug/19
2) Σ_(n=0) ^∞  A_n  =(π/6)Σ_(n=0) ^∞  2^n  e^(−(√3)2^n )   +((π(√3))/(18)) Σ_(n=0) ^∞  e^(−(√3)2^n )   those series  converges  ⇒Σ A_n  converges  we can verify that lim_(n→+∞) n^n  A_n  ≠0 ⇒Σ A_n diverges
2)n=0An=π6n=02ne32n+π318n=0e32nthoseseriesconvergesΣAnconvergeswecanverifythatlimn+nnAn0ΣAndiverges
Commented by mathmax by abdo last updated on 02/Aug/19
1) we have A_n =∫_(−∞) ^(+∞)   ((cos(2^n x))/((x^2  +3)^2 ))dx ⇒A_n =Re(∫_(−∞) ^(+∞)  (e^(i2^n x) /((x^2  +3)^2 ))dx)  let ϕ(z) =(e^(i2^n z) /((z^2  +3)^2 ))  poles of ϕ?  ϕ(z) =(e^(i2^n z) /((z−i(√3))^2 (z+i(√3))^2 ))  the poles of ϕ are +^− i(√3)(doubles)  residus theorem give ∫_(−∞) ^(+∞) ϕ(z)dz =2iπRes(ϕ,i(√3))  Res(ϕ,i(√3)) =lim_(z→i(√3))    (1/((2−1)!)){(z−i(√3))^2 ϕ(z)}^((1))   =lim_(z→i(√3))     {(e^(i2^n z) /((z+i(√3))^2 ))}^((1)) =lim_(z→i(√3))    ((i2^n e^(i2^n z) (z+i(√3))^2 −2(z+i(√3))e^(i2^n z) )/((z+i(√3))^4 ))  =lim_(z→i(√3))    ((i2^n e^(i2^n z) (z+i(√3))−2e^(i2^n z) )/((z+i(√3))^3 ))  =((i2^n  e^(i2^n (i(√3))) (2i(√3))−2e^(i2^n (i(√3))) )/((2i(√3))^3 ))  =((−2(√3)2^n  e^(−2^n (√3)) −2 e^(−2^n (√3)) )/((−8i)(3(√3))))  =(((2(√3)2^n  +2)e^(−2^n (√3)) )/(24i(√3))) ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ ((((√3)2^n  +1)e^(−2^n (√3)) )/(12i(√3)))  =(π/(6(√3)))(  (√3)2^n  +1)e^(−2^n (√3))    ⇒ A_n =(π/(18)){3. 2^n  +(√3))e^(−(√3)2^n )
1)wehaveAn=+cos(2nx)(x2+3)2dxAn=Re(+ei2nx(x2+3)2dx)letφ(z)=ei2nz(z2+3)2polesofφ?φ(z)=ei2nz(zi3)2(z+i3)2thepolesofφare+i3(doubles)residustheoremgive+φ(z)dz=2iπRes(φ,i3)Res(φ,i3)=limzi31(21)!{(zi3)2φ(z)}(1)=limzi3{ei2nz(z+i3)2}(1)=limzi3i2nei2nz(z+i3)22(z+i3)ei2nz(z+i3)4=limzi3i2nei2nz(z+i3)2ei2nz(z+i3)3=i2nei2n(i3)(2i3)2ei2n(i3)(2i3)3=232ne2n32e2n3(8i)(33)=(232n+2)e2n324i3+φ(z)dz=2iπ(32n+1)e2n312i3=π63(32n+1)e2n3An=π18{3.2n+3)e32n