Question Number 66172 by mathmax by abdo last updated on 10/Aug/19

Commented by Prithwish sen last updated on 11/Aug/19
![lim_(n→∞) (1/n) Σ_(k=1) ^n ln[1+((k/n))^2 ] = ∫_0 ^1 ln(1+x^2 )dx =[xln(1+x^2 )−2x+2tan^(−1) x]_0 ^1 =ln2 −2+(π/2) please check.](https://www.tinkutara.com/question/Q66174.png)
Commented by mathmax by abdo last updated on 10/Aug/19
![we have ln(A_n )=Σ_(k=1) ^n ln(1+(k^2 /n^2 )) ⇒((ln(A_n ))/n) =(1/n)Σ_(k=1) ^n ln(1+((k/n))^2 ) we get a Rieman sum ⇒lim_(n→+∞) ((ln(A_n ))/n) =∫_0 ^1 ln(1+x^2 )dx by parts ∫_0 ^1 ln(1+x^2 )dx =[xln(1+x^2 )]_0 ^1 −∫_0 ^1 x((2x)/(1+x^2 ))dx =ln(2)−2 ∫_0 ^1 ((x^2 +1−1)/(x^2 +1))dx =ln(2)−2 +2 ∫_0 ^1 (dx/(1+x^2 )) =ln(2)−2 +2[arctanx]_0 ^1 =ln(2)−2+2×(π/4) =ln(2)−2+(π/2) finally lim_(n→+∞) ((ln(A_n ))/n) =(π/2) +ln(2)−2 .](https://www.tinkutara.com/question/Q66187.png)
Commented by Prithwish sen last updated on 10/Aug/19

Commented by mathmax by abdo last updated on 10/Aug/19
