Menu Close

let-A-p-0-pi-x-p-cos-nx-dx-1-calculate-A-0-A-1-A-2-2-determine-a-relation-of-recurrence-between-A-p-




Question Number 67795 by mathmax by abdo last updated on 31/Aug/19
let  A_p =∫_0 ^π  x^p  cos(nx)dx  1) calculate A_0 ,A_1 ,A_2   2)determine a relation of recurrence between  A_p
letAp=0πxpcos(nx)dx1)calculateA0,A1,A22)determinearelationofrecurrencebetweenAp
Commented by mathmax by abdo last updated on 03/Sep/19
1) A_0 =∫_0 ^π  cos(nx)dx =[(1/n)sin(nx)]_0 ^π  =0  A_1 =∫_0 ^π  x cos(nx)dx   by parts   A_1 =[(x/n)sin(nx)]_0 ^(π ) −∫_0 ^π (1/n)sin(nx)dx  =−(1/n) ∫_0 ^π  sin(nx)dx =−(1/n)[−(1/n)cos(nx)]_0 ^π =(1/n^2 ){ (−1)^n −1}  A_2 =∫_0 ^π  x^2 cos(nx)dx =_(by parts)    [(x^2 /n)sin(nx)]_0 ^π  −∫_0 ^π  ((2x)/n)sin(nx)dx  =−(1/n)∫_0 ^π  xsin(nx)dx =−(1/n){ [−(x/n)cos(nx)]_0 ^π −∫_0 ^π −(1/n)cos(nx)dx}  =−(1/n){−(1/n)(π(−1)^n ) +(1/n^2 )[sin(nx)]_0 ^π }  =(π/n^2 )(−1)^n
1)A0=0πcos(nx)dx=[1nsin(nx)]0π=0A1=0πxcos(nx)dxbypartsA1=[xnsin(nx)]0π0π1nsin(nx)dx=1n0πsin(nx)dx=1n[1ncos(nx)]0π=1n2{(1)n1}A2=0πx2cos(nx)dx=byparts[x2nsin(nx)]0π0π2xnsin(nx)dx=1n0πxsin(nx)dx=1n{[xncos(nx)]0π0π1ncos(nx)dx}=1n{1n(π(1)n)+1n2[sin(nx)]0π}=πn2(1)n
Commented by mathmax by abdo last updated on 04/Sep/19
2) by parts  u^′ =x^p  and v=cos(nx) ⇒  A_p =[(x^(p+1) /(p+1)) cos(nx)]_0 ^π  −∫_0 ^π  (x^(p+1) /(p+1))(−nsin(nx))dx  =(π^(p+1) /(p+1))(−1)^n   +(n/(p+1)) ∫_0 ^π   x^(p+1)  sin(nx)dx again by parts  u^′  =x^(p+1)  and v =sin(nx) ⇒  ∫_0 ^π   x^(p+1)  sin(nx)dx =[(x^(p+2) /(p+2)) sin(nx)]_0 ^π  −∫_0 ^π  (x^(p+2) /(p+2))(1/n)cos(nx)dx  =−(1/(n(p+2))) ∫_0 ^π  x^(p+2)  cos(nx)dx =−(1/(n(p+2))) A_(p+2)  ⇒  A_p =(π^(p+1) /(p+1))(−1)^n  +(n/(p+1))(−(1/(n(p+2))))A_(p+2)  ⇒  A_p =(π^(p+1) /(p+1))(−1)^n −(1/((p+1)(p+2))) A_(p+2)    ⇒  (1/((p+1)(p+2))) A_(p+2) =(π^(p+1) /(p+1))(−1)^n  −A_p  ⇒  A_(p+2) =(p+1)(p+2)(π^(p+1) /(p+1))(−1)^n − (p+1)(p+2)A_p  ⇒  A_(p+2)  =(p+2)(−1)^n π^(p+1)  −(p+1)(p+2)A_p
2)bypartsu=xpandv=cos(nx)Ap=[xp+1p+1cos(nx)]0π0πxp+1p+1(nsin(nx))dx=πp+1p+1(1)n+np+10πxp+1sin(nx)dxagainbypartsu=xp+1andv=sin(nx)0πxp+1sin(nx)dx=[xp+2p+2sin(nx)]0π0πxp+2p+21ncos(nx)dx=1n(p+2)0πxp+2cos(nx)dx=1n(p+2)Ap+2Ap=πp+1p+1(1)n+np+1(1n(p+2))Ap+2Ap=πp+1p+1(1)n1(p+1)(p+2)Ap+21(p+1)(p+2)Ap+2=πp+1p+1(1)nApAp+2=(p+1)(p+2)πp+1p+1(1)n(p+1)(p+2)ApAp+2=(p+2)(1)nπp+1(p+1)(p+2)Ap

Leave a Reply

Your email address will not be published. Required fields are marked *