let-A-p-0-pi-x-p-cos-nx-dx-1-calculate-A-0-A-1-A-2-2-determine-a-relation-of-recurrence-between-A-p- Tinku Tara June 3, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 67795 by mathmax by abdo last updated on 31/Aug/19 letAp=∫0πxpcos(nx)dx1)calculateA0,A1,A22)determinearelationofrecurrencebetweenAp Commented by mathmax by abdo last updated on 03/Sep/19 1)A0=∫0πcos(nx)dx=[1nsin(nx)]0π=0A1=∫0πxcos(nx)dxbypartsA1=[xnsin(nx)]0π−∫0π1nsin(nx)dx=−1n∫0πsin(nx)dx=−1n[−1ncos(nx)]0π=1n2{(−1)n−1}A2=∫0πx2cos(nx)dx=byparts[x2nsin(nx)]0π−∫0π2xnsin(nx)dx=−1n∫0πxsin(nx)dx=−1n{[−xncos(nx)]0π−∫0π−1ncos(nx)dx}=−1n{−1n(π(−1)n)+1n2[sin(nx)]0π}=πn2(−1)n Commented by mathmax by abdo last updated on 04/Sep/19 2)bypartsu′=xpandv=cos(nx)⇒Ap=[xp+1p+1cos(nx)]0π−∫0πxp+1p+1(−nsin(nx))dx=πp+1p+1(−1)n+np+1∫0πxp+1sin(nx)dxagainbypartsu′=xp+1andv=sin(nx)⇒∫0πxp+1sin(nx)dx=[xp+2p+2sin(nx)]0π−∫0πxp+2p+21ncos(nx)dx=−1n(p+2)∫0πxp+2cos(nx)dx=−1n(p+2)Ap+2⇒Ap=πp+1p+1(−1)n+np+1(−1n(p+2))Ap+2⇒Ap=πp+1p+1(−1)n−1(p+1)(p+2)Ap+2⇒1(p+1)(p+2)Ap+2=πp+1p+1(−1)n−Ap⇒Ap+2=(p+1)(p+2)πp+1p+1(−1)n−(p+1)(p+2)Ap⇒Ap+2=(p+2)(−1)nπp+1−(p+1)(p+2)Ap Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Solve-the-following-sum-i-1-1-i-1-ix-i-x-2x-2-3x-3-4x-4-Next Next post: Question-133335 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.