Let-and-denote-functions-of-x-where-is-odd-and-is-even-x-R-Is-it-generally-true-that-integrating-an-odd-function-gives-an-even-function-and-vice-versa-1-x-dx-1-x-C-and-2-x-d Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 1582 by 112358 last updated on 21/Aug/15 Letϕandεdenotefunctionsofxwhereϕisoddandεiseven∀x∈R.Isitgenerallytruethatintegratinganoddfunctiongivesanevenfunctionandviceversa?∫ϕ1(x)dx=ε1(x)+C?and∫ϕ2(x)dx=ε2(x)+K? Answered by 123456 last updated on 23/Aug/15 letsϕaoddfunctionandεaevenfunctioncontinuousanddirrentebiableintoR,thenϕ(−x)=−ϕ(x)[ϕ(−x)]′=[−ϕ(x)]′−ϕ′(−x)=−ϕ′(x)ϕ′(−x)=ϕ′(x)andε(−x)=ε(x)[ε(−x)]′=[ε(x)]′−ε′(−x)=ε′(x)ε′(−x)=ε′(x)thenletsϕaoddfunctioncontinuousandintegableintoRtakeε(x):=∫x0ϕ(x)dxε(−x)=∫−x0ϕ(t)dt+Cu=−t⇒du=−dtt=0⇒u=0t=−x⇒u=xε(−x)=−∫x0ϕ(−u)du=∫x0ϕ(u)du=ε(x)thenεisaevenfunctionandyoucanwrite∫ϕ(x)dx=∫x0ϕ(x)dx+C=ε(x)+Ctofinishletsε(x)aevenfunctioncontonuousandintegrableonRtakeϕ(x):=∫x0ε(t)dtϕ(−x)=∫−x0ε(t)dtu=−t⇒du=−dtt=0⇒u=0t=−x⇒u=xwϕ(−x)=−∫x0ε(−u)du=−∫x0ε(u)du=−ϕ(x)thenϕisaoddfunctionandalso∫ε(x)dx=∫x0ε(t)dt+C=ϕ(x)+C Commented by 112358 last updated on 23/Aug/15 Thanks Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-67116Next Next post: Question-132652 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.