Menu Close

Let-and-denote-functions-of-x-where-is-odd-and-is-even-x-R-Is-it-generally-true-that-integrating-an-odd-function-gives-an-even-function-and-vice-versa-1-x-dx-1-x-C-and-2-x-d




Question Number 1582 by 112358 last updated on 21/Aug/15
Let φ and ε denote functions of x  where φ is odd and ε is even ∀x∈R.  Is it generally true that integrating  an odd function gives an even  function and vice versa?   ∫φ_1 (x) dx=ε_1 (x)+C ?  and ∫φ_2 (x)dx=ε_2 (x)+K?
LetϕandεdenotefunctionsofxwhereϕisoddandεisevenxR.Isitgenerallytruethatintegratinganoddfunctiongivesanevenfunctionandviceversa?ϕ1(x)dx=ε1(x)+C?andϕ2(x)dx=ε2(x)+K?
Answered by 123456 last updated on 23/Aug/15
lets φ a odd function and ε a even function  continuous and dirrentebiable into R, then  φ(−x)=−φ(x)  [φ(−x)]′=[−φ(x)]′  −φ′(−x)=−φ′(x)  φ′(−x)=φ′(x)  and  ε(−x)=ε(x)  [ε(−x)]′=[ε(x)]′  −ε′(−x)=ε′(x)  ε′(−x)=ε′(x)  then lets φ a odd function continuous and integable into R  take ε(x):=∫_0 ^x φ(x)dx  ε(−x)=∫_0 ^(−x) φ(t)dt+C  u=−t⇒du=−dt  t=0⇒u=0  t=−x⇒u=x  ε(−x)=−∫_0 ^x φ(−u)du=∫_0 ^x φ(u)du=ε(x)  then ε is a even function and you can write  ∫φ(x)dx=∫_0 ^x φ(x)dx+C=ε(x)+C  to finish lets ε(x) a even function contonuous and integrable on R  take φ(x):=∫_0 ^x ε(t)dt  φ(−x)=∫_0 ^(−x) ε(t)dt  u=−t⇒du=−dt  t=0⇒u=0  t=−x⇒u=xw  φ(−x)=−∫_0 ^x ε(−u)du=−∫_0 ^x ε(u)du=−φ(x)  then φ is a odd function and also  ∫ε(x)dx=∫_0 ^x ε(t)dt+C=φ(x)+C
letsϕaoddfunctionandεaevenfunctioncontinuousanddirrentebiableintoR,thenϕ(x)=ϕ(x)[ϕ(x)]=[ϕ(x)]ϕ(x)=ϕ(x)ϕ(x)=ϕ(x)andε(x)=ε(x)[ε(x)]=[ε(x)]ε(x)=ε(x)ε(x)=ε(x)thenletsϕaoddfunctioncontinuousandintegableintoRtakeε(x):=x0ϕ(x)dxε(x)=x0ϕ(t)dt+Cu=tdu=dtt=0u=0t=xu=xε(x)=x0ϕ(u)du=x0ϕ(u)du=ε(x)thenεisaevenfunctionandyoucanwriteϕ(x)dx=x0ϕ(x)dx+C=ε(x)+Ctofinishletsε(x)aevenfunctioncontonuousandintegrableonRtakeϕ(x):=x0ε(t)dtϕ(x)=x0ε(t)dtu=tdu=dtt=0u=0t=xu=xwϕ(x)=x0ε(u)du=x0ε(u)du=ϕ(x)thenϕisaoddfunctionandalsoε(x)dx=x0ε(t)dt+C=ϕ(x)+C
Commented by 112358 last updated on 23/Aug/15
Thanks
Thanks

Leave a Reply

Your email address will not be published. Required fields are marked *