Menu Close

let-and-roots-of-the-equation-x-2-x-2-0-simplify-A-p-p-p-and-calculate-p-0-n-1-A-p-and-p-0-n-1-A-p-2-




Question Number 73487 by abdomathmax last updated on 13/Nov/19
let    α and β roots of  the equation  x^2 −x+2=0  simplify   A_p = α^p  +β^p  and calculate  Σ_(p=0) ^(n−1)  A_p   and Σ_(p=0) ^(n−1)   A_p ^2
letαandβrootsoftheequationx2x+2=0simplifyAp=αp+βpandcalculatep=0n1Apandp=0n1Ap2
Commented by mathmax by abdo last updated on 15/Nov/19
letsolve x^2 −x +2 =0 →Δ=1−8=−7  ⇒  α=((1+i(√7))/2)  and β=((1−i(√7))/2)  ∣α∣=(1/2)(√(1+7))=((2(√2))/2) =(√2) ⇒α=(√2)e^(iarctan((√7)))   and β =(√2)e^(−iarctan((√7)))   A_p =α^p  +β^p  =((√2))^p  e^(ip arctan((√7)))  +((√2))^p  e^(−ip arctan((√7)))   =2^(p/2) ×2 Re(e^(ip arctan((√7))) ) =2^(1+(p/2))   cos(p arctan((√7)))  Σ_(p=0) ^(n−1)  A_p =Σ_(p=0) ^(n−1)  2^(1+(p/2)) cos(parctan((√7)))  =Re(2Σ_(p=0) ^(n−1)  ((√2))^p  e^(ip arctan((√7))) )  we have  Σ_(p=0) ^(n−1) ((√2))^p  e^(ip arctan((√7))) ) =Σ_(p=0) ^(n−1) ((√2)e^(i arctan((√7))) )^p   =((1−((√2)e^(i arctan((√7))) )^n )/(1−(√2)e^(i arctan((√7))) )) =((1−((√2))^n  e^(in arctan((√7))) )/(1−(√2)e^(isrctan((√7))) ))  =(((1−((√2))^n ( cos(narctan((√7)) +isin(narctan((√7))))/(1−(√2)(cos(arctan((√7))+isin(arctan((√7)))))  rest to extract  Re (of this quantity...)
letsolvex2x+2=0Δ=18=7α=1+i72andβ=1i72α∣=121+7=222=2α=2eiarctan(7)andβ=2eiarctan(7)Ap=αp+βp=(2)peiparctan(7)+(2)peiparctan(7)=2p2×2Re(eiparctan(7))=21+p2cos(parctan(7))p=0n1Ap=p=0n121+p2cos(parctan(7))=Re(2p=0n1(2)peiparctan(7))wehavep=0n1(2)peiparctan(7))=p=0n1(2eiarctan(7))p=1(2eiarctan(7))n12eiarctan(7)=1(2)neinarctan(7)12eisrctan(7)=(1(2)n(cos(narctan(7)+isin(narctan(7))12(cos(arctan(7)+isin(arctan(7))resttoextractRe(ofthisquantity)

Leave a Reply

Your email address will not be published. Required fields are marked *