Menu Close

let-and-roots-of-the-equation-x-2-x-2-0-simplify-A-p-p-p-and-calculate-p-0-n-1-A-p-and-p-0-n-1-A-p-2-




Question Number 73487 by abdomathmax last updated on 13/Nov/19
let    α and β roots of  the equation  x^2 −x+2=0  simplify   A_p = α^p  +β^p  and calculate  Σ_(p=0) ^(n−1)  A_p   and Σ_(p=0) ^(n−1)   A_p ^2
$${let}\:\:\:\:\alpha\:{and}\:\beta\:{roots}\:{of}\:\:{the}\:{equation}\:\:{x}^{\mathrm{2}} −{x}+\mathrm{2}=\mathrm{0} \\ $$$${simplify}\:\:\:{A}_{{p}} =\:\alpha^{{p}} \:+\beta^{{p}} \:{and}\:{calculate} \\ $$$$\sum_{{p}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{A}_{{p}} \:\:{and}\:\sum_{{p}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:{A}_{{p}} ^{\mathrm{2}} \\ $$
Commented by mathmax by abdo last updated on 15/Nov/19
letsolve x^2 −x +2 =0 →Δ=1−8=−7  ⇒  α=((1+i(√7))/2)  and β=((1−i(√7))/2)  ∣α∣=(1/2)(√(1+7))=((2(√2))/2) =(√2) ⇒α=(√2)e^(iarctan((√7)))   and β =(√2)e^(−iarctan((√7)))   A_p =α^p  +β^p  =((√2))^p  e^(ip arctan((√7)))  +((√2))^p  e^(−ip arctan((√7)))   =2^(p/2) ×2 Re(e^(ip arctan((√7))) ) =2^(1+(p/2))   cos(p arctan((√7)))  Σ_(p=0) ^(n−1)  A_p =Σ_(p=0) ^(n−1)  2^(1+(p/2)) cos(parctan((√7)))  =Re(2Σ_(p=0) ^(n−1)  ((√2))^p  e^(ip arctan((√7))) )  we have  Σ_(p=0) ^(n−1) ((√2))^p  e^(ip arctan((√7))) ) =Σ_(p=0) ^(n−1) ((√2)e^(i arctan((√7))) )^p   =((1−((√2)e^(i arctan((√7))) )^n )/(1−(√2)e^(i arctan((√7))) )) =((1−((√2))^n  e^(in arctan((√7))) )/(1−(√2)e^(isrctan((√7))) ))  =(((1−((√2))^n ( cos(narctan((√7)) +isin(narctan((√7))))/(1−(√2)(cos(arctan((√7))+isin(arctan((√7)))))  rest to extract  Re (of this quantity...)
$${letsolve}\:{x}^{\mathrm{2}} −{x}\:+\mathrm{2}\:=\mathrm{0}\:\rightarrow\Delta=\mathrm{1}−\mathrm{8}=−\mathrm{7}\:\:\Rightarrow \\ $$$$\alpha=\frac{\mathrm{1}+{i}\sqrt{\mathrm{7}}}{\mathrm{2}}\:\:{and}\:\beta=\frac{\mathrm{1}−{i}\sqrt{\mathrm{7}}}{\mathrm{2}} \\ $$$$\mid\alpha\mid=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{1}+\mathrm{7}}=\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{2}}\:=\sqrt{\mathrm{2}}\:\Rightarrow\alpha=\sqrt{\mathrm{2}}{e}^{{iarctan}\left(\sqrt{\mathrm{7}}\right)} \:\:{and}\:\beta\:=\sqrt{\mathrm{2}}{e}^{−{iarctan}\left(\sqrt{\mathrm{7}}\right)} \\ $$$${A}_{{p}} =\alpha^{{p}} \:+\beta^{{p}} \:=\left(\sqrt{\mathrm{2}}\right)^{{p}} \:{e}^{{ip}\:{arctan}\left(\sqrt{\mathrm{7}}\right)} \:+\left(\sqrt{\mathrm{2}}\right)^{{p}} \:{e}^{−{ip}\:{arctan}\left(\sqrt{\mathrm{7}}\right)} \\ $$$$=\mathrm{2}^{\frac{{p}}{\mathrm{2}}} ×\mathrm{2}\:{Re}\left({e}^{{ip}\:{arctan}\left(\sqrt{\mathrm{7}}\right)} \right)\:=\mathrm{2}^{\mathrm{1}+\frac{{p}}{\mathrm{2}}} \:\:{cos}\left({p}\:{arctan}\left(\sqrt{\mathrm{7}}\right)\right) \\ $$$$\sum_{{p}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{A}_{{p}} =\sum_{{p}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\mathrm{2}^{\mathrm{1}+\frac{{p}}{\mathrm{2}}} {cos}\left({parctan}\left(\sqrt{\mathrm{7}}\right)\right) \\ $$$$={Re}\left(\mathrm{2}\sum_{{p}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\left(\sqrt{\mathrm{2}}\right)^{{p}} \:{e}^{{ip}\:{arctan}\left(\sqrt{\mathrm{7}}\right)} \right)\:\:{we}\:{have} \\ $$$$\left.\sum_{{p}=\mathrm{0}} ^{{n}−\mathrm{1}} \left(\sqrt{\mathrm{2}}\right)^{{p}} \:{e}^{{ip}\:{arctan}\left(\sqrt{\mathrm{7}}\right)} \right)\:=\sum_{{p}=\mathrm{0}} ^{{n}−\mathrm{1}} \left(\sqrt{\mathrm{2}}{e}^{{i}\:{arctan}\left(\sqrt{\mathrm{7}}\right)} \right)^{{p}} \\ $$$$=\frac{\mathrm{1}−\left(\sqrt{\mathrm{2}}{e}^{{i}\:{arctan}\left(\sqrt{\mathrm{7}}\right)} \right)^{{n}} }{\mathrm{1}−\sqrt{\mathrm{2}}{e}^{{i}\:{arctan}\left(\sqrt{\mathrm{7}}\right)} }\:=\frac{\mathrm{1}−\left(\sqrt{\mathrm{2}}\right)^{{n}} \:{e}^{{in}\:{arctan}\left(\sqrt{\mathrm{7}}\right)} }{\mathrm{1}−\sqrt{\mathrm{2}}{e}^{{isrctan}\left(\sqrt{\mathrm{7}}\right)} } \\ $$$$=\frac{\left(\mathrm{1}−\left(\sqrt{\mathrm{2}}\right)^{{n}} \left(\:{cos}\left({narctan}\left(\sqrt{\mathrm{7}}\right)\:+{isin}\left({narctan}\left(\sqrt{\mathrm{7}}\right)\right)\right.\right.\right.}{\mathrm{1}−\sqrt{\mathrm{2}}\left({cos}\left({arctan}\left(\sqrt{\mathrm{7}}\right)+{isin}\left({arctan}\left(\sqrt{\mathrm{7}}\right)\right)\right.\right.} \\ $$$${rest}\:{to}\:{extract}\:\:{Re}\:\left({of}\:{this}\:{quantity}…\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *