Question Number 75796 by ~blr237~ last updated on 17/Dec/19
$$\mathrm{let}\:\mathrm{be}\:\mathrm{a},\mathrm{b}\:\mathrm{such}\:\mathrm{as}\:\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} =\mathrm{ab} \\ $$$$\mathrm{find}\:\:\mathrm{out}\:\mathrm{Z}=\frac{\mathrm{a}^{\mathrm{n}} +\mathrm{b}^{\mathrm{n}} }{\mathrm{a}^{\mathrm{n}} −\mathrm{b}^{\mathrm{n}} }\:\:\mathrm{when}\:\:\mathrm{a}\neq\mathrm{0} \\ $$$$ \\ $$
Answered by mr W last updated on 17/Dec/19
$$\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} =\mathrm{ab} \\ $$$$\frac{{a}}{{b}}−\frac{{b}}{{a}}=\mathrm{1} \\ $$$${let}\:\frac{{a}}{{b}}={t} \\ $$$${t}−\frac{\mathrm{1}}{{t}}=\mathrm{1} \\ $$$${t}^{\mathrm{2}} −{t}−\mathrm{1}=\mathrm{0} \\ $$$${t}=\frac{\mathrm{1}\pm\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\mathrm{Z}=\frac{\mathrm{a}^{\mathrm{n}} +\mathrm{b}^{\mathrm{n}} }{\mathrm{a}^{\mathrm{n}} −\mathrm{b}^{\mathrm{n}} }=\frac{{t}^{{n}} +\mathrm{1}}{{t}^{{n}} −\mathrm{1}}=\mathrm{1}+\frac{\mathrm{2}}{{t}^{{n}} −\mathrm{1}} \\ $$$$=\mathrm{1}+\frac{\mathrm{2}}{\left(\frac{\mathrm{1}\pm\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} −\mathrm{1}} \\ $$
Commented by ~blr237~ last updated on 17/Dec/19
$$\mathrm{you}\:\mathrm{should}\:\mathrm{firstly}\:\mathrm{prove}\:\mathrm{that}\:\:\mathrm{b}#\mathrm{0} \\ $$$$\mathrm{or}\:\mathrm{let}\:\mathrm{divide}\:\mathrm{by}\:\mathrm{a}\:\mathrm{cause}\:\mathrm{it}'\mathrm{s}\:\:\mathrm{not}\:\mathrm{null} \\ $$
Commented by mr W last updated on 17/Dec/19
$${that}'{s}\:{obvious}.\: \\ $$