Menu Close

Let-be-a-binary-operation-on-Z-defined-by-x-y-1-2-x-y-1-1-2-1-1-x-y-Is-associative-




Question Number 4775 by Yozzii last updated on 08/Mar/16
Let ∗ be a binary operation on Z  defined by   x∗y=(1/2)(x+y+1+(1/2)(1+(−1)^(x+y) )).  Is ∗ associative?
$${Let}\:\ast\:{be}\:{a}\:{binary}\:{operation}\:{on}\:\mathbb{Z} \\ $$$${defined}\:{by}\: \\ $$$${x}\ast{y}=\frac{\mathrm{1}}{\mathrm{2}}\left({x}+{y}+\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\left(−\mathrm{1}\right)^{{x}+{y}} \right)\right). \\ $$$${Is}\:\ast\:{associative}? \\ $$
Commented by prakash jain last updated on 09/Mar/16
x+y=2i  y+z=2n+1  x=2  y=6  z=3  y∗z=(1/2)(10)=5  x∗y=(1/2)(2+6+1+1)=5  x∗(y∗z)=2∗5=4  (x∗y)∗z=5∗3=5
$${x}+{y}=\mathrm{2}{i} \\ $$$${y}+{z}=\mathrm{2}{n}+\mathrm{1} \\ $$$${x}=\mathrm{2} \\ $$$${y}=\mathrm{6} \\ $$$${z}=\mathrm{3} \\ $$$${y}\ast{z}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{10}\right)=\mathrm{5} \\ $$$${x}\ast{y}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}+\mathrm{6}+\mathrm{1}+\mathrm{1}\right)=\mathrm{5} \\ $$$${x}\ast\left({y}\ast{z}\right)=\mathrm{2}\ast\mathrm{5}=\mathrm{4} \\ $$$$\left({x}\ast{y}\right)\ast{z}=\mathrm{5}\ast\mathrm{3}=\mathrm{5} \\ $$
Commented by Yozzii last updated on 09/Mar/16
Thanks.
$${Thanks}.\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *