Menu Close

Let-be-the-angle-between-the-regression-line-of-y-on-x-and-the-regression-line-of-x-on-y-Then-prove-that-tan-1-r-2-r-x-y-x-2-y-2-




Question Number 19 by user1 last updated on 25/Jan/15
Let θ be the angle between the regression  line of y on x and the regression line of  x on y. Then prove that   tan θ={(((1−r^2 ))/r)×((σ_x ×σ_y )/((σ_x ^2 +σ_y ^2 )))}
Letθbetheanglebetweentheregressionlineofyonxandtheregressionlineofxony.Thenprovethattanθ={(1r2)r×σx×σy(σx2+σy2)}
Answered by user1 last updated on 30/Oct/14
The equation of the line of regression   of x on y is     (x−x^− )= r×(σ_x /σ_y )(y−y^− )          ...(i)  And the equation of the line of regression   of y on x is  (y−y^− )= r×(σ_y /σ_x )(x−x^− )             ...(ii)  Let m_1  and m_2 be the slopes of (i) and (ii) res.  Then, m_1 =(σ_y /(r∙σ_x )) and m_2 =((r∙σ_y )/σ_x )  ∴   tan θ = (((m_1 −m_2 ))/((1+m_1 m_2 )))      = (((σ_y /(r∙σ_x ))−((r∙σ_y )/σ_x ))/(1+(((σ_y )^2 )/((σ_x )^2 ))))={(((1−r^2 ))/r)×((σ_x ∙σ_y )/((σ_x ^2 +σ_y ^2 )))}
Theequationofthelineofregressionofxonyis(xx)=r×σxσy(yy)(i)Andtheequationofthelineofregressionofyonxis(yy)=r×σyσx(xx)(ii)Letm1andm2betheslopesof(i)and(ii)res.Then,m1=σyrσxandm2=rσyσxtanθ=(m1m2)(1+m1m2)=σyrσxrσyσx1+(σy)2(σx)2={(1r2)r×σxσy(σx2+σy2)}