Menu Close

Let-c-be-a-constant-Using-Var-X-E-X-E-X-2-show-that-a-Var-c-X-c-2-Var-X-b-Var-c-X-Var-X-




Question Number 6605 by WAI LIN last updated on 05/Jul/16
Let c be a constant. Using Var(X) = E [(X− E [X])^2 ], show that  (a) Var(c X) = c^2  Var(X);  (b) Var ( c+X) = Var(X).
$${Let}\:{c}\:{be}\:{a}\:{constant}.\:{Using}\:{Var}\left({X}\right)\:=\:{E}\:\left[\left({X}−\:{E}\:\left[{X}\right]\right)^{\mathrm{2}} \right],\:{show}\:{that} \\ $$$$\left({a}\right)\:{Var}\left({c}\:{X}\right)\:=\:{c}^{\mathrm{2}} \:{Var}\left({X}\right); \\ $$$$\left({b}\right)\:{Var}\:\left(\:{c}+{X}\right)\:=\:{Var}\left({X}\right). \\ $$
Commented by prakash jain last updated on 05/Jul/16
E(cX)=cE(X)  E(c+X)=c+E(X)  Var(cX)=E[(cX−cE(X))^2 ]  =E[c^2 (X−E(X))^2 ]=c^2 E[(X−E(X))^2 ]=c^2 Var(X)  Var(c+X)=E[(c+X−c+E(X))^2 ]=Var(X)
$${E}\left(\mathrm{c}{X}\right)={cE}\left({X}\right) \\ $$$${E}\left({c}+{X}\right)={c}+{E}\left({X}\right) \\ $$$${Var}\left({cX}\right)={E}\left[\left({cX}−{cE}\left({X}\right)\right)^{\mathrm{2}} \right] \\ $$$$={E}\left[{c}^{\mathrm{2}} \left({X}−{E}\left({X}\right)\right)^{\mathrm{2}} \right]={c}^{\mathrm{2}} {E}\left[\left({X}−{E}\left({X}\right)\right)^{\mathrm{2}} \right]={c}^{\mathrm{2}} {Var}\left({X}\right) \\ $$$${Var}\left({c}+{X}\right)={E}\left[\left({c}+{X}−{c}+{E}\left({X}\right)\right)^{\mathrm{2}} \right]={Var}\left({X}\right) \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *