Menu Close

Let-consider-A-lim-x-0-0-1-t-x-dt-1-x-Prove-that-A-0-1-ln-t-dt-Deduce-the-value-of-A-




Question Number 75228 by ~blr237~ last updated on 08/Dec/19
 Let consider   A=lim_(x→0)  (∫_0 ^1 (Γ(t))^x dt)^(1/x)   Prove that  A=∫_0 ^1 ln(Γ(t))dt    Deduce the value of A
LetconsiderA=limx0(01(Γ(t))xdt)1xProvethatA=01ln(Γ(t))dtDeducethevalueofA
Commented by mind is power last updated on 08/Dec/19
ln{(∫_0 ^1 Γ^x (t)dt)^(1/x) }=g(x)  =((ln(∫_0 ^1 Γ^x (t)dt))/x)=g(x)  let h(x)=ln(∫_0 ^1 Γ^x (t)dt)  g(x)=((h(x))/x)=((h(x)−h(0))/(x−0))  lim_(x→0)  g(x)=h′(x)∣_(x=0)   h′(x)=((∫_0 ^1 ln{Γ(t)}.Γ^x (t))/(∫_0 ^1 Γ^x (t)dt))dt  x=0,give us  ∫_0 ^1 ln(Γ(t))dt  ∫_0 ^1 ln(Γ(t))dt=∫_0 ^1 ln(Γ(1−t))dt  ⇒2A=∫_0 ^1 {ln(Γ(t))+ln(Γ(1−t))}dt  =∫_0 ^1 ln(Γ(t)Γ(1−t))dt  Γ(t).Γ(1−t)=(π/(sin(πt)))  =∫_0 ^1 {ln(π)−ln(sin(πt))}dt  =ln(π)−∫_0 ^1 ln(sin(πt))dt  u=πt⇒∫_0 ^1 ln(sin(πt))dt=((∫_0 ^π ln(sin(u))du)/π)  ∫_0 ^π ln(sin(u))du=2∫_0 ^(π/2) ln(sin(u))du  ∫_0 ^(π/2) ln(sin(2u))du=(π/2)ln(2)+2∫_0 ^(π/2) ln(sin(u))du  =∫_0 ^π ln(sin(w))(dw/2)=∫_0 ^(π/2) ln(sin(w))dw=2∫_0 ^(π/2) ln(sin(y))dy+(π/2)ln(2)  ⇒∫_0 ^(π/2) ln(sin(w))dw=−(π/2)ln(2)  2A=ln(π)−2.−(1/2)ln(2)  2A=ln(2π)⇒A=((ln(2π))/2)
ln{(01Γx(t)dt)1x}=g(x)=ln(01Γx(t)dt)x=g(x)leth(x)=ln(01Γx(t)dt)g(x)=h(x)x=h(x)h(0)x0limx0g(x)=h(x)x=0h(x)=01ln{Γ(t)}.Γx(t)01Γx(t)dtdtx=0,giveus01ln(Γ(t))dt01ln(Γ(t))dt=01ln(Γ(1t))dt2A=01{ln(Γ(t))+ln(Γ(1t))}dt=01ln(Γ(t)Γ(1t))dtΓ(t).Γ(1t)=πsin(πt)=01{ln(π)ln(sin(πt))}dt=ln(π)01ln(sin(πt))dtu=πt01ln(sin(πt))dt=0πln(sin(u))duπ0πln(sin(u))du=20π2ln(sin(u))du0π2ln(sin(2u))du=π2ln(2)+20π2ln(sin(u))du=0πln(sin(w))dw2=0π2ln(sin(w))dw=20π2ln(sin(y))dy+π2ln(2)0π2ln(sin(w))dw=π2ln(2)2A=ln(π)2.12ln(2)2A=ln(2π)A=ln(2π)2

Leave a Reply

Your email address will not be published. Required fields are marked *