Menu Close

Let-consider-a-n-n-and-u-n-n-two-reals-sequence-defined-such-as-a-0-1-n-gt-1-a-n-1-p-0-n-a-p-a-n-p-and-p-0-n-a-p-u-n-p-0-Part1-1-Express-n-gt-1-a-n-i




Question Number 68220 by ~ À ® @ 237 ~ last updated on 07/Sep/19
   Let consider (a_n )_n  and (u_n )_n  two reals  sequence    defined such as   a_0 =1 , ∀ n>1  a_(n+1) =Σ_(p=0) ^n a_p a_(n−p)    and  Σ_(p=0) ^n a_p u_(n−p) =0  Part1  1)Express  ∀ n >1   a_n  in terms of n  2) Find the largest domain of convergence of the integer serie {a_n x^n }  3)Determinate ∀ x∈D the sum f(x) of {a_n x^n }  4)Find the radius of convergence of the serie {u_n x^n }   5) Give the relation that between the sum S(x) of the second serie and (x/(f(x)))   6) Can you developp in integer serie  g(x)=((πx)/(tan(πx)))  Part2  Now do  the part 1   but in the order  2)−1)−3)−4)−5)−6)
Letconsider(an)nand(un)ntworealssequencedefinedsuchasa0=1,n>1an+1=np=0apanpandnp=0apunp=0Part11)Expressn>1anintermsofn2)Findthelargestdomainofconvergenceoftheintegerserie{anxn}3)DeterminatexDthesumf(x)of{anxn}4)Findtheradiusofconvergenceoftheserie{unxn}5)GivetherelationthatbetweenthesumS(x)ofthesecondserieandxf(x)6)Canyoudeveloppinintegerserieg(x)=πxtan(πx)Part2Nowdothepart1butintheorder2)1)3)4)5)6)

Leave a Reply

Your email address will not be published. Required fields are marked *