Menu Close

Let-consider-an-integer-serie-a-n-x-n-given-by-a-n-H-n-k-1-n-1-k-1-Find-out-the-largest-domain-D-of-convergence-of-that-integer-serie-2-x-D-explicit-the-sum-S-x-of-the-a-n-x-n




Question Number 66814 by ~ À ® @ 237 ~ last updated on 20/Aug/19
Let consider an integer serie {a_n x^n } given by  a_n  = H_n =Σ_(k=1) ^n (1/k)   1) Find out the largest domain D of convergence of that integer serie  2) ∀ x∈D  , explicit the sum S(x) of the {a_n x^n }   3) Calculate  ∫_(−1) ^1  S(1−x)S(x) dx .
$${Let}\:{consider}\:{an}\:{integer}\:{serie}\:\left\{{a}_{{n}} {x}^{{n}} \right\}\:{given}\:{by}\:\:{a}_{{n}} \:=\:{H}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}}\: \\ $$$$\left.\mathrm{1}\right)\:{Find}\:{out}\:{the}\:{largest}\:{domain}\:{D}\:{of}\:{convergence}\:{of}\:{that}\:{integer}\:{serie} \\ $$$$\left.\mathrm{2}\right)\:\forall\:{x}\in{D}\:\:,\:{explicit}\:{the}\:{sum}\:{S}\left({x}\right)\:{of}\:{the}\:\left\{{a}_{{n}} {x}^{{n}} \right\}\: \\ $$$$\left.\mathrm{3}\right)\:{Calculate}\:\:\int_{−\mathrm{1}} ^{\mathrm{1}} \:{S}\left(\mathrm{1}−{x}\right){S}\left({x}\right)\:{dx}\:. \\ $$$$ \\ $$$$\:\:\:\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *