Menu Close

Let-consider-I-R-2-a-parametric-curve-1-Prove-that-if-a-lt-b-and-a-b-then-there-exist-t-0-a-b-such-as-t-0-is-colinear-to-b-a-2-Show-that-if-is-regular-and-the-




Question Number 74300 by ~blr237~ last updated on 21/Nov/19
Let consider  γ  :I→R^2   a parametric curve   1)Prove that if  a<b  and  γ(a)≠γ(b) then there exist  t_0 ∈]a,b[    such as  γ′(t_0 )  is colinear to γ(b)−γ(a)   2)Show that if  γ is regular and the  function f :I→R    t→f(t)=∣∣γ(t)−O(0,0) ∣∣  is maximal in t_0 ∈I  Then  ∣K_γ (t_0 )∣≥(1/(f(t_0 )))
Letconsiderγ:IR2aparametriccurve1)Provethatifa<bandγ(a)γ(b)thenthereexistt0]a,b[suchasγ(t0)iscolineartoγ(b)γ(a)2)Showthatifγisregularandthefunctionf:IRtf(t)=∣∣γ(t)O(0,0)∣∣ismaximalint0IThenKγ(t0)∣⩾1f(t0)
Answered by mind is power last updated on 21/Nov/19
γ(t)=(x(t),y(t))  γ(a)≠γ(b)  ⇒x(a)≠x(b)  or y(a)≠y(b)  x(a)≠x(b)  g(t)=y(t)(x(a)−x(b)−x(t)(y(a)−y(b))  g(a)=−y(a)x(b)+x(a)y(b)  g(b)=y(b)x(a)−x(b)y(a)=g(a)  g(a)=g(b) mean values ⇒∃t_0 ∈]a,b[∣g′(t_0 )=0  g′(t_0 )=y′(t_0 )(x(a)−x(b))−x′(t_0 ).(y(a)−y(b))=0  since γ(a)≠γ(b) we have 3 cases  if x(a)=x(b)⇒x′(t_0 )=0  x(a)≠x(b) & y(a)−y(b)=0⇒y′(t_0 )=0  x(a)#x(b)&y(a)≠y(b)⇒  ⇔((y′(t_0 ))/(x′(t_0 )))=((y(a)−y(b))/(x(a)−x(b)))  ((y′(t_0 ))/(x′(t_0 )))  is coeficuent of tangent in t_o   ⇒in t_0 ,γ′(t_0 )  is colinear to γ(b)−γ(a)  2) calcule  corbur
γ(t)=(x(t),y(t))γ(a)γ(b)x(a)x(b)ory(a)y(b)x(a)x(b)g(t)=y(t)(x(a)x(b)x(t)(y(a)y(b))g(a)=y(a)x(b)+x(a)y(b)g(b)=y(b)x(a)x(b)y(a)=g(a)g(a)=g(b)meanvaluest0]a,b[g(t0)=0g(t0)=y(t0)(x(a)x(b))x(t0).(y(a)y(b))=0sinceγ(a)γ(b)wehave3casesifx(a)=x(b)x(t0)=0x(a)x(b)&y(a)y(b)=0y(t0)=0You can't use 'macro parameter character #' in math modey(t0)x(t0)=y(a)y(b)x(a)x(b)y(t0)x(t0)iscoeficuentoftangentintoint0,γ(t0)iscolineartoγ(b)γ(a)2)calculecorbur

Leave a Reply

Your email address will not be published. Required fields are marked *