Let-consider-I-R-2-a-parametric-curve-1-Prove-that-if-a-lt-b-and-a-b-then-there-exist-t-0-a-b-such-as-t-0-is-colinear-to-b-a-2-Show-that-if-is-regular-and-the- Tinku Tara June 3, 2023 Coordinate Geometry 0 Comments FacebookTweetPin Question Number 74300 by ~blr237~ last updated on 21/Nov/19 Letconsiderγ:I→R2aparametriccurve1)Provethatifa<bandγ(a)≠γ(b)thenthereexistt0∈]a,b[suchasγ′(t0)iscolineartoγ(b)−γ(a)2)Showthatifγisregularandthefunctionf:I→Rt→f(t)=∣∣γ(t)−O(0,0)∣∣ismaximalint0∈IThen∣Kγ(t0)∣⩾1f(t0) Answered by mind is power last updated on 21/Nov/19 γ(t)=(x(t),y(t))γ(a)≠γ(b)⇒x(a)≠x(b)ory(a)≠y(b)x(a)≠x(b)g(t)=y(t)(x(a)−x(b)−x(t)(y(a)−y(b))g(a)=−y(a)x(b)+x(a)y(b)g(b)=y(b)x(a)−x(b)y(a)=g(a)g(a)=g(b)meanvalues⇒∃t0∈]a,b[∣g′(t0)=0g′(t0)=y′(t0)(x(a)−x(b))−x′(t0).(y(a)−y(b))=0sinceγ(a)≠γ(b)wehave3casesifx(a)=x(b)⇒x′(t0)=0x(a)≠x(b)&y(a)−y(b)=0⇒y′(t0)=0You can't use 'macro parameter character #' in math modeYou can't use 'macro parameter character #' in math mode⇔y′(t0)x′(t0)=y(a)−y(b)x(a)−x(b)y′(t0)x′(t0)iscoeficuentoftangentinto⇒int0,γ′(t0)iscolineartoγ(b)−γ(a)2)calculecorbur Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Prove-that-S-x-y-z-R-3-x-2-y-2-z-2-is-a-surface-and-find-out-if-possible-the-tangent-plan-in-O-0-0-0-Next Next post: Question-139842 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.