Menu Close

Let-consider-K-0-1-1-x-a-1-x-b-1-x-c-x-1-lnx-dx-prove-that-e-K-a-b-a-c-b-c-a-b-c-a-b-c-




Question Number 69241 by ~ À ® @ 237 ~ last updated on 21/Sep/19
 Let consider K=∫_0 ^1  (((1−x^a )(1−x^b )(1−x^c ))/((x−1)lnx))dx   prove that   e^K = (((a+b)!(a+c)!(b+c)!)/(a!b!c!(a+b+c)!))
$$\:{Let}\:{consider}\:{K}=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\left(\mathrm{1}−{x}^{{a}} \right)\left(\mathrm{1}−{x}^{{b}} \right)\left(\mathrm{1}−{x}^{{c}} \right)}{\left({x}−\mathrm{1}\right){lnx}}{dx}\: \\ $$$${prove}\:{that}\: \\ $$$${e}^{{K}} =\:\frac{\left({a}+{b}\right)!\left({a}+{c}\right)!\left({b}+{c}\right)!}{{a}!{b}!{c}!\left({a}+{b}+{c}\right)!}\:\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *