Menu Close

Let-cos-1-x-cos-1-2x-cos-1-3x-pi-If-x-satisfies-the-cubic-ax-3-bx-2-cx-1-0-then-a-b-c-has-the-value-equal-to-




Question Number 131298 by liberty last updated on 03/Feb/21
Let cos^(−1) (x)+cos^(−1) (2x)+cos^(−1) (3x)=π  .If x satisfies the cubic ax^3 +bx^2 +cx−1=0  then a+b+c has the value equal to
Letcos1(x)+cos1(2x)+cos1(3x)=π.Ifxsatisfiesthecubicax3+bx2+cx1=0thena+b+chasthevalueequalto
Answered by mr W last updated on 03/Feb/21
cos (cos^(−1) x+cos^(−1) 2x)=cos (π−cos^(−1) 3x)  2x^2 −(√((1−x^2 )(1−4x^2 )))=−3x  (√((1−x^2 )(1−4x^2 )))=2x^2 +3x  (1−x^2 )(1−4x^2 )=4x^4 +12x^3 +9x^2   12x^3 +14x^2 −1=0≡ax^3 +bx^2 +cx−1=0  ⇒a=12, b=14, c=0  ⇒a+b+c=26
cos(cos1x+cos12x)=cos(πcos13x)2x2(1x2)(14x2)=3x(1x2)(14x2)=2x2+3x(1x2)(14x2)=4x4+12x3+9x212x3+14x21=0ax3+bx2+cx1=0a=12,b=14,c=0a+b+c=26