Menu Close

Let-d-dx-F-x-e-sin-x-x-x-gt-0-If-1-4-2-e-sin-x-2-x-dx-F-k-F-1-then-one-of-the-possible-values-of-k-is-




Question Number 65961 by mmkkmm000m last updated on 06/Aug/19
Let (d/dx)(F(x)) = (e^(sin x) /x) , x>0.  If ∫_( 1) ^4   ((2 e^(sin x^2 ) )/x) dx = F(k)−F(1), then one  of the possible values of  k  is
$$\mathrm{Let}\:\frac{{d}}{{dx}}\left({F}\left({x}\right)\right)\:=\:\frac{{e}^{\mathrm{sin}\:{x}} }{{x}}\:,\:{x}>\mathrm{0}. \\ $$$$\mathrm{If}\:\underset{\:\mathrm{1}} {\overset{\mathrm{4}} {\int}}\:\:\frac{\mathrm{2}\:{e}^{\mathrm{sin}\:{x}^{\mathrm{2}} } }{{x}}\:{dx}\:=\:{F}\left({k}\right)−{F}\left(\mathrm{1}\right),\:\mathrm{then}\:\mathrm{one} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{possible}\:\mathrm{values}\:\mathrm{of}\:\:{k}\:\:\mathrm{is} \\ $$
Answered by mr W last updated on 06/Aug/19
∫_( 1) ^4   ((2 e^(sin x^2 ) )/x) dx  =∫_( 1) ^4   ((2x e^(sin x^2 ) )/x^2 ) dx  =∫_( 1) ^4  (e^(sin x^2 ) /x^2 ) d(x^2 )  =∫_( 1) ^(16)  (e^(sin t) /t) dt  with t=x^2   =[F(t)]_1 ^(16)   =F(16)−F(1)  =F(k)−F(1)  ⇒k=16
$$\underset{\:\mathrm{1}} {\overset{\mathrm{4}} {\int}}\:\:\frac{\mathrm{2}\:{e}^{\mathrm{sin}\:{x}^{\mathrm{2}} } }{{x}}\:{dx} \\ $$$$=\underset{\:\mathrm{1}} {\overset{\mathrm{4}} {\int}}\:\:\frac{\mathrm{2}{x}\:{e}^{\mathrm{sin}\:{x}^{\mathrm{2}} } }{{x}^{\mathrm{2}} }\:{dx} \\ $$$$=\underset{\:\mathrm{1}} {\overset{\mathrm{4}} {\int}}\:\frac{{e}^{\mathrm{sin}\:{x}^{\mathrm{2}} } }{{x}^{\mathrm{2}} }\:{d}\left({x}^{\mathrm{2}} \right) \\ $$$$=\underset{\:\mathrm{1}} {\overset{\mathrm{16}} {\int}}\:\frac{{e}^{\mathrm{sin}\:{t}} }{{t}}\:{dt}\:\:{with}\:{t}={x}^{\mathrm{2}} \\ $$$$=\left[{F}\left({t}\right)\right]_{\mathrm{1}} ^{\mathrm{16}} \\ $$$$={F}\left(\mathrm{16}\right)−{F}\left(\mathrm{1}\right) \\ $$$$={F}\left({k}\right)−{F}\left(\mathrm{1}\right) \\ $$$$\Rightarrow{k}=\mathrm{16} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *