Menu Close

Let-E-be-a-banach-space-Y-is-normed-space-and-suppose-that-Ta-a-A-B-E-Y-If-Tax-a-A-Y-is-bounded-for-all-x-E-then-Ta-a-A-is-bounded-




Question Number 7499 by Tawakalitu. last updated on 31/Aug/16
Let E be a banach space , Y is normed space and   suppose that {Ta : a∈A} ⊆  B (E, Y) If {Tax : a∈A}  ⊆ Y is bounded , for all x∈E, then {∥Ta∥ : a∈A} is   bounded.
$${Let}\:{E}\:{be}\:{a}\:{banach}\:{space}\:,\:{Y}\:{is}\:{normed}\:{space}\:{and}\: \\ $$$${suppose}\:{that}\:\left\{{Ta}\::\:{a}\in{A}\right\}\:\subseteq\:\:{B}\:\left({E},\:{Y}\right)\:{If}\:\left\{{Tax}\::\:{a}\in{A}\right\} \\ $$$$\subseteq\:{Y}\:{is}\:{bounded}\:,\:{for}\:{all}\:{x}\in{E},\:{then}\:\left\{\parallel{Ta}\parallel\::\:{a}\in{A}\right\}\:{is}\: \\ $$$${bounded}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *