Menu Close

Let-f-0-1-R-be-a-differentiable-function-Prove-that-there-exists-a-c-0-1-such-that-4-pi-f-1-f-0-1-c-2-f-c-




Question Number 1133 by 112358 last updated on 29/Jun/15
Let f : [ 0 , 1 ] → R  be a   differentiable function. Prove  that there exists a c ∈ [0,1] such  that   (4/π)[f(1)−f(0)]=(1+c^2 )f^  ′(c).
Letf:[0,1]Rbeadifferentiablefunction.Provethatthereexistsac[0,1]suchthatPrime causes double exponent: use braces to clarify
Commented by 123456 last updated on 29/Jun/15
if f is diferrentiable into [a,b] then  ∃ξ∈[a,b]⇒f′(ξ)=((f(b)−f(a))/(b−a))   (b>a)
iffisdiferrentiableinto[a,b]thenξ[a,b]f(ξ)=f(b)f(a)ba(b>a)
Commented by 123456 last updated on 29/Jun/15
f is continuous at [a,b] then  m=min{f(a),f(b)}  M=max{f(a),f(b)}  c∈[m,M]⇒∃ξ∈[a,b],f(ξ)=c
fiscontinuousat[a,b]thenm=min{f(a),f(b)}M=max{f(a),f(b)}c[m,M]ξ[a,b],f(ξ)=c
Commented by 123456 last updated on 30/Jun/15
f′(c)=((4[f(1)−f(0)])/(π(1+c^2 )))  f(c)=((4[f(1)−f(0)])/π)arctan c
f(c)=4[f(1)f(0)]π(1+c2)f(c)=4[f(1)f(0)]πarctanc
Commented by 123456 last updated on 01/Jul/15
f(x)=ax+b  f(1)=a+b  f(0)=b  f(1)−f(0)=a  ((4[f(1)−f(0)])/π)=((4a)/π)  f′(x)=a  (1+c^2 )f′(c)=(1+c^2 )a  c^2 +1=(4/π)  c=±(√((4/π)−1))
f(x)=ax+bf(1)=a+bf(0)=bf(1)f(0)=a4[f(1)f(0)]π=4aπf(x)=a(1+c2)f(c)=(1+c2)ac2+1=4πc=±4π1
Commented by 123456 last updated on 03/Jul/15
g(x)=arctan x
g(x)=arctanx
Answered by 123456 last updated on 03/Jul/15
g(x)=arctan x  ((f(1)−f(0))/(g(1)−g(0)))=((f′(c))/(g′(c)))
g(x)=arctanxf(1)f(0)g(1)g(0)=f(c)g(c)

Leave a Reply

Your email address will not be published. Required fields are marked *