Menu Close

let-f-0-pi-4-dx-1-sin-sinx-with-0-lt-lt-pi-2-1-explicite-f-2-calculate-0-pi-4-dx-1-sin-sinx-2-




Question Number 78273 by msup trace by abdo last updated on 15/Jan/20
let f(θ) =∫_0 ^(π/4)   (dx/(1+sinθ sinx))    with 0<θ<(π/2)  1) explicite f(θ)  2) calculate ∫_0 ^(π/4)   (dx/((1+sinθ sinx)^2 ))
letf(θ)=0π4dx1+sinθsinxwith0<θ<π21)explicitef(θ)2)calculate0π4dx(1+sinθsinx)2
Commented by mathmax by abdo last updated on 18/Jan/20
1) changement tan((x/2))=u ⇒f(θ)=∫_0 ^((√2)−1)   (1/(1+sinθ×((2u)/(1+u^2 ))))((2du)/(1+u^2 ))  =∫_0 ^((√2)−1)    ((2du)/(1+u^2  +2sinθ u)) =∫_0 ^((√2)−1)   ((2du)/(u^2  +2sinθ u +sin^2 θ +cos^2 θ))  =∫_0 ^((√2)−1)  ((2du)/((u+sinθ)^2  +cos^2 θ)) =_(u+sinθ =(cosθ)t) 2 ∫_(tanθ) ^((((√2)−1)/(cosθ))+tanθ)   ((cosθ dt)/(cos^2 θ(1+t^2 )))  =(2/(cosθ))[arctant]_(tanθ) ^((((√2)−1)/(cosθ))+tanθ) ⇒f(θ) =(2/(cosθ)){ arctan((((√2)−1)/(cosθ))+tanθ)−θ}
1)changementtan(x2)=uf(θ)=02111+sinθ×2u1+u22du1+u2=0212du1+u2+2sinθu=0212duu2+2sinθu+sin2θ+cos2θ=0212du(u+sinθ)2+cos2θ=u+sinθ=(cosθ)t2tanθ21cosθ+tanθcosθdtcos2θ(1+t2)=2cosθ[arctant]tanθ21cosθ+tanθf(θ)=2cosθ{arctan(21cosθ+tanθ)θ}

Leave a Reply

Your email address will not be published. Required fields are marked *