let-f-a-0-dx-x-2-1-x-2-a-with-a-gt-0-1-determine-a-explicit-form-of-f-a-2-calculate-g-a-0-dx-x-2-1-x-2-a-2-3-give-f-n-a-at-form-of-integral-4-calcul Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 67674 by Abdo msup. last updated on 30/Aug/19 letf(a)=∫0∞dx(x2+1)(x2+a)witha>01)determineaexplicitformoff(a)2)calculateg(a)=∫0∞dx(x2+1)(x2+a)23)givef(n)(a)atformofintegral4)calculate∫0∞dx(x2+1)(x2+3)2and∫0∞dx(x2+1)3 Commented by mathmax by abdo last updated on 30/Aug/19 1)f(a)=∫0∞dx(x2+1)(x2+a)⇒2f(a)=∫−∞+∞dx(x2+1)(x2+a)letW(z)=1(z2+1)(z2+a)⇒W(z)=1(z−i)(z+i)(z−ia)(z+ia)residustheoremgive∫−∞+∞W(z)dz=2iπ{Res(W,i)+Res(W,ia)}Res(W,i)=limz→i(z−i)W(z)=12i(a−1)(a≠1)Res(W,ia)=limz→ia(z−ia)W(z)=12ia(1−a)⇒∫−∞+∞W(z)dz=2iπ{12i(a−1)+12ia(1−a)}=πa−1+πa(1−a)=πa−1−π(a−1)a=πa−1(1−1a)=π(a−1)a(a−1)=πa(a+1)⇒f(a)=π2a(a+1)=π2(a+a)anotherwayf(a)=1a−1∫0∞{1x2+1−1x2+a}dx=1a−1×π2−1a−1∫0∞dxx2+achangementx=atgive∫0∞dxx2+a=∫0∞adta(t2+1)=1a×π2⇒f(a)=π2(a−1)−π2a(a−1) Commented by mathmax by abdo last updated on 30/Aug/19 2)wehavef′(a)=−∫0∞dx(x2+1)(x2+a)2=−g(a)⇒g(a)=−f′(a)butf(a)=π2(a+a)⇒f′(a)=−π2×(a+a)′(a+a)2=−π2×1+12a(a+a)2=−π22a+12a(a+a)2=−π4×2a+1a(a+a)2⇒g(a)=π(2a+1)4a(a+a)2 Commented by mathmax by abdo last updated on 30/Aug/19 4)∫0∞dx(x2+1)(x2+3)2=g(3)=π(23+1)43(3+3)2letfindI=∫0∞dx(x2+1)3⇒2I=∫−∞+∞dx(x2+1)3letw(z)=1(z2+1)3⇒w(z)=1(z−i)3(z+i)3thepolesofwareiand−i(triples)residustheoremgive∫−∞+∞w(z)dz=2iπRes(w,i)Res(w,i)=limz→i1(3−1)!{(z−i)3w(z)}(2)=limz→i12{(z+i)−3}(2)=limz→i12{−3(z+i)−4}(1)=limz→i−32{−4(z+i)−5}=6(2i)−5=625i5=632i=3.216.2i=316i⇒∫−∞+∞w(z)dz=2iπ×316i=3π8=2I⇒I=3π16 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: decompose-the-folowing-fraction-at-R-x-1-F-x-x-3-1-x-6-2-G-x-x-2-1-x-3-x-2-x-1-2-Next Next post: calculate-f-0-x-sin-x-1-x-4-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.