Question Number 67674 by Abdo msup. last updated on 30/Aug/19
$${let}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} +{a}\right)}\:\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{g}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+{a}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right){give}\:{f}^{\left({n}\right)} \left({a}\right)\:{at}\:{form}\:{of}\:{integral} \\ $$$$\left.\mathrm{4}\right){calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }\:{and} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{3}} } \\ $$
Commented by mathmax by abdo last updated on 30/Aug/19
$$\left.\mathrm{1}\right){f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+{a}\right)}\:\Rightarrow\mathrm{2}{f}\left({a}\right)\:=\int_{−\infty} ^{+\infty} \:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+{a}\right)} \\ $$$${let}\:{W}\left({z}\right)\:=\frac{\mathrm{1}}{\left({z}^{\mathrm{2}} \:+\mathrm{1}\right)\left({z}^{\mathrm{2}} \:+{a}\right)}\:\Rightarrow{W}\left({z}\right)\:=\frac{\mathrm{1}}{\left({z}−{i}\right)\left({z}+{i}\right)\left({z}−{i}\sqrt{{a}}\right)\left({z}+{i}\sqrt{{a}}\right)} \\ $$$${residus}\:{theorem}\:{give}\: \\ $$$$\int_{−\infty} ^{+\infty} \:{W}\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left\{\:{Res}\left({W},{i}\right)\:+{Res}\left({W},{i}\sqrt{{a}}\right)\right\} \\ $$$${Res}\left({W},{i}\right)\:={lim}_{{z}\rightarrow{i}} \left({z}−{i}\right){W}\left({z}\right)\:=\frac{\mathrm{1}}{\mathrm{2}{i}\left({a}−\mathrm{1}\right)}\:\:\:\left(\:{a}\neq\mathrm{1}\right) \\ $$$${Res}\left({W},{i}\sqrt{{a}}\right)\:={lim}_{{z}\rightarrow{i}\sqrt{{a}}} \:\:\:\left({z}−{i}\sqrt{{a}}\right){W}\left({z}\right)\:=\frac{\mathrm{1}}{\mathrm{2}{i}\sqrt{{a}}\left(\mathrm{1}−{a}\right)}\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\:{W}\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left\{\frac{\mathrm{1}}{\mathrm{2}{i}\left({a}−\mathrm{1}\right)}\:+\frac{\mathrm{1}}{\mathrm{2}{i}\sqrt{{a}}\left(\mathrm{1}−{a}\right)}\right\} \\ $$$$=\frac{\pi}{{a}−\mathrm{1}}\:+\frac{\pi}{\:\sqrt{{a}}\left(\mathrm{1}−{a}\right)}\:=\frac{\pi}{{a}−\mathrm{1}}−\frac{\pi}{\left({a}−\mathrm{1}\right)\sqrt{{a}}}\:=\frac{\pi}{{a}−\mathrm{1}}\left(\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{{a}}}\right) \\ $$$$=\frac{\pi\left(\sqrt{{a}}−\mathrm{1}\right)}{\:\sqrt{{a}}\left({a}−\mathrm{1}\right)}\:=\frac{\pi}{\:\sqrt{{a}}\left(\sqrt{{a}}+\mathrm{1}\right)}\:\Rightarrow\:{f}\left({a}\right)\:=\frac{\pi}{\mathrm{2}\sqrt{{a}}\left(\sqrt{{a}}+\mathrm{1}\right)}\:=\frac{\pi}{\mathrm{2}\left({a}+\sqrt{{a}}\right)} \\ $$$${another}\:{way}\:\:{f}\left({a}\right)\:=\frac{\mathrm{1}}{{a}−\mathrm{1}}\int_{\mathrm{0}} ^{\infty} \left\{\frac{\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} +{a}}\right\}{dx} \\ $$$$=\frac{\mathrm{1}}{{a}−\mathrm{1}}×\frac{\pi}{\mathrm{2}}−\frac{\mathrm{1}}{{a}−\mathrm{1}}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+{a}}\:\:{changement}\:{x}\:=\sqrt{{a}}{t}\:{give} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+{a}}\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\sqrt{{a}}{dt}}{{a}\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)}\:=\frac{\mathrm{1}}{\:\sqrt{{a}}}×\frac{\pi}{\mathrm{2}}\:\Rightarrow{f}\left({a}\right)=\frac{\pi}{\mathrm{2}\left({a}−\mathrm{1}\right)}−\frac{\pi}{\mathrm{2}\sqrt{{a}}\left({a}−\mathrm{1}\right)} \\ $$
Commented by mathmax by abdo last updated on 30/Aug/19
$$\left.\mathrm{2}\right)\:\:{we}\:{have}\:{f}^{'} \left({a}\right)\:=−\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+{a}\right)^{\mathrm{2}} }\:=−{g}\left({a}\right)\:\Rightarrow \\ $$$${g}\left({a}\right)\:=−{f}^{'} \left({a}\right)\:\:{but}\:{f}\left({a}\right)\:=\frac{\pi}{\mathrm{2}\left({a}+\sqrt{{a}}\right)}\:\Rightarrow{f}^{'} \left({a}\right)\:=−\frac{\pi}{\mathrm{2}}×\frac{\left({a}+\sqrt{{a}}\right)^{'} }{\left({a}+\sqrt{{a}}\right)^{\mathrm{2}} } \\ $$$$=−\frac{\pi}{\mathrm{2}}×\frac{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}\sqrt{{a}}}}{\left({a}+\sqrt{{a}}\right)^{\mathrm{2}} }\:=−\frac{\pi}{\mathrm{2}}\:\frac{\mathrm{2}\sqrt{{a}}+\mathrm{1}}{\mathrm{2}\sqrt{{a}}\left({a}+\sqrt{{a}}\right)^{\mathrm{2}} }\:=−\frac{\pi}{\mathrm{4}}×\frac{\mathrm{2}\sqrt{{a}}+\mathrm{1}}{\:\sqrt{{a}}\left({a}+\sqrt{{a}}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$${g}\left({a}\right)\:=\frac{\pi\left(\mathrm{2}\sqrt{{a}}\:+\mathrm{1}\right)}{\mathrm{4}\sqrt{{a}}\left({a}+\sqrt{{a}}\right)^{\mathrm{2}} }\:\:\: \\ $$
Commented by mathmax by abdo last updated on 30/Aug/19
$$\left.\mathrm{4}\right)\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }\:={g}\left(\mathrm{3}\right)\:=\frac{\pi\left(\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{1}\right)}{\mathrm{4}\sqrt{\mathrm{3}}\left(\mathrm{3}+\sqrt{\mathrm{3}}\right)^{\mathrm{2}} } \\ $$$${let}\:{find}\:{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{3}} }\:\Rightarrow\:\mathrm{2}{I}\:=\int_{−\infty} ^{+\infty} \:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{3}} }\:{let}\:{w}\left({z}\right)=\frac{\mathrm{1}}{\left({z}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$\Rightarrow{w}\left({z}\right)\:=\frac{\mathrm{1}}{\left({z}−{i}\right)^{\mathrm{3}} \left({z}+{i}\right)^{\mathrm{3}} }\:{the}\:{poles}\:{of}\:{w}\:{are}\:{i}\:{and}\:−{i}\left({triples}\right) \\ $$$${residus}\:{theorem}\:{give}\:\int_{−\infty} ^{+\infty} {w}\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left({w},{i}\right) \\ $$$${Res}\left({w},{i}\right)\:={lim}_{{z}\rightarrow{i}} \:\frac{\mathrm{1}}{\left(\mathrm{3}−\mathrm{1}\right)!}\left\{\left({z}−{i}\right)^{\mathrm{3}} {w}\left({z}\right)\right\}^{\left(\mathrm{2}\right)} \\ $$$$={lim}_{{z}\rightarrow{i}} \:\frac{\mathrm{1}}{\mathrm{2}}\left\{\left({z}+{i}\right)^{−\mathrm{3}} \right\}^{\left(\mathrm{2}\right)} \:={lim}_{{z}\rightarrow{i}} \:\:\frac{\mathrm{1}}{\mathrm{2}}\left\{−\mathrm{3}\left({z}+{i}\right)^{−\mathrm{4}} \right\}^{\left(\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow{i}} \:\:\:\frac{−\mathrm{3}}{\mathrm{2}}\left\{−\mathrm{4}\left({z}+{i}\right)^{−\mathrm{5}} \right\}\:=\mathrm{6}\:\left(\mathrm{2}{i}\right)^{−\mathrm{5}} \:=\frac{\mathrm{6}}{\mathrm{2}^{\mathrm{5}} {i}^{\mathrm{5}} }\:=\frac{\mathrm{6}}{\mathrm{32}{i}}\:=\frac{\mathrm{3}.\mathrm{2}}{\mathrm{16}.\mathrm{2}{i}}\:=\frac{\mathrm{3}}{\mathrm{16}{i}} \\ $$$$\Rightarrow\:\int_{−\infty} ^{+\infty} \:{w}\left({z}\right){dz}\:=\mathrm{2}{i}\pi×\frac{\mathrm{3}}{\mathrm{16}{i}}\:=\frac{\mathrm{3}\pi}{\mathrm{8}}\:=\mathrm{2}{I}\:\Rightarrow\:{I}\:=\frac{\mathrm{3}\pi}{\mathrm{16}} \\ $$