Menu Close

let-f-a-0-dx-x-2-1-x-2-a-with-a-gt-0-1-determine-a-explicit-form-of-f-a-2-calculate-g-a-0-dx-x-2-1-x-2-a-2-3-give-f-n-a-at-form-of-integral-4-calcul




Question Number 67674 by Abdo msup. last updated on 30/Aug/19
let f(a) =∫_0 ^∞      (dx/((x^2 +1)(x^2 +a)))  with a>0  1) determine a explicit form of f(a)  2) calculate g(a) =∫_0 ^∞   (dx/((x^2  +1)(x^2  +a)^2 ))  3)give f^((n)) (a) at form of integral  4)calculate ∫_0 ^∞   (dx/((x^2  +1)(x^2  +3)^2 )) and  ∫_0 ^∞    (dx/((x^2  +1)^3 ))
letf(a)=0dx(x2+1)(x2+a)witha>01)determineaexplicitformoff(a)2)calculateg(a)=0dx(x2+1)(x2+a)23)givef(n)(a)atformofintegral4)calculate0dx(x2+1)(x2+3)2and0dx(x2+1)3
Commented by mathmax by abdo last updated on 30/Aug/19
1)f(a) =∫_0 ^∞   (dx/((x^2 +1)(x^2  +a))) ⇒2f(a) =∫_(−∞) ^(+∞)  (dx/((x^2  +1)(x^2  +a)))  let W(z) =(1/((z^2  +1)(z^2  +a))) ⇒W(z) =(1/((z−i)(z+i)(z−i(√a))(z+i(√a))))  residus theorem give   ∫_(−∞) ^(+∞)  W(z)dz =2iπ{ Res(W,i) +Res(W,i(√a))}  Res(W,i) =lim_(z→i) (z−i)W(z) =(1/(2i(a−1)))   ( a≠1)  Res(W,i(√a)) =lim_(z→i(√a))    (z−i(√a))W(z) =(1/(2i(√a)(1−a))) ⇒  ∫_(−∞) ^(+∞)   W(z)dz =2iπ{(1/(2i(a−1))) +(1/(2i(√a)(1−a)))}  =(π/(a−1)) +(π/( (√a)(1−a))) =(π/(a−1))−(π/((a−1)(√a))) =(π/(a−1))(1−(1/( (√a))))  =((π((√a)−1))/( (√a)(a−1))) =(π/( (√a)((√a)+1))) ⇒ f(a) =(π/(2(√a)((√a)+1))) =(π/(2(a+(√a))))  another way  f(a) =(1/(a−1))∫_0 ^∞ {(1/(x^2 +1))−(1/(x^2 +a))}dx  =(1/(a−1))×(π/2)−(1/(a−1)) ∫_0 ^∞    (dx/(x^2  +a))  changement x =(√a)t give  ∫_0 ^∞   (dx/(x^2  +a)) =∫_0 ^∞    (((√a)dt)/(a(t^2  +1))) =(1/( (√a)))×(π/2) ⇒f(a)=(π/(2(a−1)))−(π/(2(√a)(a−1)))
1)f(a)=0dx(x2+1)(x2+a)2f(a)=+dx(x2+1)(x2+a)letW(z)=1(z2+1)(z2+a)W(z)=1(zi)(z+i)(zia)(z+ia)residustheoremgive+W(z)dz=2iπ{Res(W,i)+Res(W,ia)}Res(W,i)=limzi(zi)W(z)=12i(a1)(a1)Res(W,ia)=limzia(zia)W(z)=12ia(1a)+W(z)dz=2iπ{12i(a1)+12ia(1a)}=πa1+πa(1a)=πa1π(a1)a=πa1(11a)=π(a1)a(a1)=πa(a+1)f(a)=π2a(a+1)=π2(a+a)anotherwayf(a)=1a10{1x2+11x2+a}dx=1a1×π21a10dxx2+achangementx=atgive0dxx2+a=0adta(t2+1)=1a×π2f(a)=π2(a1)π2a(a1)
Commented by mathmax by abdo last updated on 30/Aug/19
2)  we have f^′ (a) =−∫_0 ^∞    (dx/((x^2  +1)(x^2  +a)^2 )) =−g(a) ⇒  g(a) =−f^′ (a)  but f(a) =(π/(2(a+(√a)))) ⇒f^′ (a) =−(π/2)×(((a+(√a))^′ )/((a+(√a))^2 ))  =−(π/2)×((1+(1/(2(√a))))/((a+(√a))^2 )) =−(π/2) ((2(√a)+1)/(2(√a)(a+(√a))^2 )) =−(π/4)×((2(√a)+1)/( (√a)(a+(√a))^2 )) ⇒  g(a) =((π(2(√a) +1))/(4(√a)(a+(√a))^2 ))
2)wehavef(a)=0dx(x2+1)(x2+a)2=g(a)g(a)=f(a)butf(a)=π2(a+a)f(a)=π2×(a+a)(a+a)2=π2×1+12a(a+a)2=π22a+12a(a+a)2=π4×2a+1a(a+a)2g(a)=π(2a+1)4a(a+a)2
Commented by mathmax by abdo last updated on 30/Aug/19
4)∫_0 ^∞      (dx/((x^2 +1)(x^2  +3)^2 )) =g(3) =((π(2(√3)+1))/(4(√3)(3+(√3))^2 ))  let find I =∫_0 ^∞     (dx/((x^2  +1)^3 )) ⇒ 2I =∫_(−∞) ^(+∞)  (dx/((x^2  +1)^3 )) let w(z)=(1/((z^2  +1)^3 ))  ⇒w(z) =(1/((z−i)^3 (z+i)^3 )) the poles of w are i and −i(triples)  residus theorem give ∫_(−∞) ^(+∞) w(z)dz =2iπ Res(w,i)  Res(w,i) =lim_(z→i)  (1/((3−1)!)){(z−i)^3 w(z)}^((2))   =lim_(z→i)  (1/2){(z+i)^(−3) }^((2))  =lim_(z→i)   (1/2){−3(z+i)^(−4) }^((1))   =lim_(z→i)    ((−3)/2){−4(z+i)^(−5) } =6 (2i)^(−5)  =(6/(2^5 i^5 )) =(6/(32i)) =((3.2)/(16.2i)) =(3/(16i))  ⇒ ∫_(−∞) ^(+∞)  w(z)dz =2iπ×(3/(16i)) =((3π)/8) =2I ⇒ I =((3π)/(16))
4)0dx(x2+1)(x2+3)2=g(3)=π(23+1)43(3+3)2letfindI=0dx(x2+1)32I=+dx(x2+1)3letw(z)=1(z2+1)3w(z)=1(zi)3(z+i)3thepolesofwareiandi(triples)residustheoremgive+w(z)dz=2iπRes(w,i)Res(w,i)=limzi1(31)!{(zi)3w(z)}(2)=limzi12{(z+i)3}(2)=limzi12{3(z+i)4}(1)=limzi32{4(z+i)5}=6(2i)5=625i5=632i=3.216.2i=316i+w(z)dz=2iπ×316i=3π8=2II=3π16

Leave a Reply

Your email address will not be published. Required fields are marked *