Menu Close

let-f-a-0-dx-x-4-2x-2-a-with-a-real-and-a-gt-1-1-determine-a-explicit-form-for-f-a-2-calculate-g-a-0-dx-x-4-2x-2-a-2-3-find-the-values-of-integrals-0-




Question Number 69564 by mathmax by abdo last updated on 25/Sep/19
let f(a) =∫_0 ^∞   (dx/(x^4 −2x^2  +a))   with a real and a>1  1) determine a explicit form for f(a)  2)  calculate g(a) =∫_0 ^∞   (dx/((x^4 −2x^2 +a)^2 ))  3) find the values of integrals  ∫_0 ^∞   (dx/(x^4 −2x^2  +3))  and ∫_0 ^∞   (dx/((x^4 −2x^2  +3)^2 ))
letf(a)=0dxx42x2+awitharealanda>11)determineaexplicitformforf(a)2)calculateg(a)=0dx(x42x2+a)23)findthevaluesofintegrals0dxx42x2+3and0dx(x42x2+3)2
Commented by mathmax by abdo last updated on 27/Sep/19
1) f(a) =∫_0 ^∞   (dx/(x^4 −2x^2  +a)) ⇒2f(a) =∫_(−∞) ^(+∞)   (dx/(x^4 −2x^2  +a))  let W(z) =(1/(z^4 −2z^2  +a))     poles of W?  z^4 −2z^2 +a =0 ⇒t^2 −2t +a =0 with t=z^2   Δ^′ =1−a<0 ⇒Δ^′ =(i(√(a−1)))^2  ⇒t_1 =1+i(√(a−1))  t_2 =1−i(√(a−1)) ⇒∣t_1 ∣ =(√(1+a−1))=(√a) ⇒t_1 =(√a)e^(iarctan((√(a−1))))   t_2 =(√a)e^(−iarctan((√(a−1))))  ⇒W(z) =(1/((z^2 −t_1 )(z^2 −t_2 )))  =(1/((z^2 −(√a)e^(iarctan((√(a−1)))) )(z^2 −(√a)e^(−iarctan((√(a−1)))) )))  =(1/((z−a^(1/4)  e^((i/2)arctan((√(a−1)))) )(z+a^(1/4)  e^((i/2)arctan((√(a−1)))) )(z−a^(1/4)  e^(−(i/2)arctan((√(a−1)))) (z+a^(1/4)  e^(−(i/2)arctan((√(a−1)))) )))  the poles of W are +^−  a^(1/4)  e^((i/2) arctan((√(a−1))))  and +^− a^(1/4)  e^(−(i/2)arctan((√(a−1))))   ∫_(−∞) ^(+∞)  W−z)dz =2iπ { Res(W,a^(1/4)  e^((i/2)arcta((√(a−1)))) )+Res(W,−a^(1/4)  e^(−(i/2)arctan((√(a−1)))) }  Res(W,a^(1/4)  e^((i/2)arctan((√(a−1)))) )  =(1/(2a^(1/4)  e^((i/2)arctan((√(a−1)))) ((√a)e^(iarctan((√(a−1)))) −(√a)e^(−iarctan((√(a−1)))) )))  =(e^(−(i/2)arctan((√(a−1)))) /(2 a^(3/4) (2i sin(arctan(√(a−1))))) =(e^(−(i/2) arctan((√(a−1)))) /(4i a^(3/4)  sin{arctan((√(a−1)))}))  Res(W,−a^(1/4)  e^(−(i/2)arctan((√(a−1)))) )  =(1/(−2a^(1/4)  e^(−(i/2)arctan((√(a−1)))) ((√a)e^(−iarctan((√(a−1)))) −(√a)e^(iarctan((√(a−1)))) )))  =(e^((i/2)arctan((√(a−1)))) /(2a^(1/4)   a^(1/2) (2isin{arctan(√(a−1)))})) =(e^((i/2) arctan((√(a−1)))) /(4ia^(3/4)  sin{arctan(√(a−1))}))  but sin{arctan(√(a−1))) =((√(a−1))/( (√(1+a−1)))) =((√(a−1))/( (√a)))=(√((a−1)/a))  ∫_(−∞) ^(+∞)   W(z)dz =2iπ{(e^(−(i/2)arctan(√(a−1))) /(4i a^(3/4) ×(√((a−1)/a)))) +(e^((i/2)arctan(√(a−1))) /(4ia^(3/4) ×(√((a−1)/a))))}  =(π/(2 a^(3/4) ((√(a−1))/a^(1/2) ))){ 2cos{arctan(√(a−1))}  =(π/(a^(1/4) (√(a−1))))×cos{arctan(√(a−1))}  but  cos{arctan(√(a−1))} =(1/( (√(1+a−1)))) =(1/( (√a))) ⇒  ∫_(−∞) ^(+∞)  W(z)dz =(π/((^4 (√a))(√(a^2 −a)))) =2f(a) ⇒  f(a) =(π/(2(^4 (√a))(√(a^2 −a)))) with  a>1
1)f(a)=0dxx42x2+a2f(a)=+dxx42x2+aletW(z)=1z42z2+apolesofW?z42z2+a=0t22t+a=0witht=z2Δ=1a<0Δ=(ia1)2t1=1+ia1t2=1ia1⇒∣t1=1+a1=at1=aeiarctan(a1)t2=aeiarctan(a1)W(z)=1(z2t1)(z2t2)=1(z2aeiarctan(a1))(z2aeiarctan(a1))=1(za14ei2arctan(a1))(z+a14ei2arctan(a1))(za14ei2arctan(a1)(z+a14ei2arctan(a1))thepolesofWare+a14ei2arctan(a1)and+a14ei2arctan(a1)+Wz)dz=2iπ{Res(W,a14ei2arcta(a1))+Res(W,a14ei2arctan(a1)}Res(W,a14ei2arctan(a1))=12a14ei2arctan(a1)(aeiarctan(a1)aeiarctan(a1))=ei2arctan(a1)2a34(2isin(arctana1)=ei2arctan(a1)4ia34sin{arctan(a1)}Res(W,a14ei2arctan(a1))=12a14ei2arctan(a1)(aeiarctan(a1)aeiarctan(a1))=ei2arctan(a1)2a14a12(2isin{arctana1)}=ei2arctan(a1)4ia34sin{arctana1}butsin{arctana1)=a11+a1=a1a=a1a+W(z)dz=2iπ{ei2arctana14ia34×a1a+ei2arctana14ia34×a1a}=π2a34a1a12{2cos{arctana1}=πa14a1×cos{arctana1}butcos{arctana1}=11+a1=1a+W(z)dz=π(4a)a2a=2f(a)f(a)=π2(4a)a2awitha>1
Commented by mathmax by abdo last updated on 27/Sep/19
2) we have f^′ (a) =−∫_0 ^∞  (dx/((x^4 −2x^2  +a)^2 )) =−g(a) ⇒  g(a)=−f^′ (a)  rest to calculate f^′ (a)...
2)wehavef(a)=0dx(x42x2+a)2=g(a)g(a)=f(a)resttocalculatef(a)
Commented by mathmax by abdo last updated on 27/Sep/19
3) ∫_0 ^∞ (dx/(x^4 −2x^2  +3)) =f(3) =(π/(2(^4 (√3))(√(9−3)))) =(π/(2(^4 (√3))(√6)))
3)0dxx42x2+3=f(3)=π2(43)93=π2(43)6

Leave a Reply

Your email address will not be published. Required fields are marked *