Menu Close

let-f-a-0-pi-2-dx-a-sinx-a-real-1-find-a-explicit-form-for-f-a-2-calculste-also-g-a-0-pi-2-dx-a-sinx-2-and-h-a-0-pi-2-dx-a-sinx-3-3-give-f-n-a-at




Question Number 68869 by mathmax by abdo last updated on 16/Sep/19
let f(a) =∫_0 ^(π/2)   (dx/(a+sinx))     (a real)  1)find a explicit form  for f(a)  2) calculste also g(a)=∫_0 ^(π/2)   (dx/((a+sinx)^2 ))  and h(a)=∫_0 ^(π/2)  (dx/((a+sinx)^3 ))  3)give f^((n)) (a) at form of integral  4) find the values of integrals  ∫_0 ^(π/2)   (dx/(3+sinx)) , ∫_0 ^(π/2)   (dx/((3+sinx)^2 ))  and ∫_0 ^(π/2)   (dx/((3+sinx)^3 ))
$${let}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{{a}+{sinx}}\:\:\:\:\:\left({a}\:{real}\right) \\ $$$$\left.\mathrm{1}\right){find}\:{a}\:{explicit}\:{form}\:\:{for}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculste}\:{also}\:{g}\left({a}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{\left({a}+{sinx}\right)^{\mathrm{2}} }\:\:{and}\:{h}\left({a}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{dx}}{\left({a}+{sinx}\right)^{\mathrm{3}} } \\ $$$$\left.\mathrm{3}\right){give}\:{f}^{\left({n}\right)} \left({a}\right)\:{at}\:{form}\:{of}\:{integral} \\ $$$$\left.\mathrm{4}\right)\:{find}\:{the}\:{values}\:{of}\:{integrals}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{\mathrm{3}+{sinx}}\:,\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{\left(\mathrm{3}+{sinx}\right)^{\mathrm{2}} } \\ $$$${and}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{\left(\mathrm{3}+{sinx}\right)^{\mathrm{3}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *