Menu Close

let-f-a-dx-x-2-1-a-e-ix-with-a-gt-0-1-find-a-explicit-form-of-f-a-2-determine-also-g-a-dx-x-2-1-a-e-ix-2-3-let-I-Re-dx-




Question Number 67542 by mathmax by abdo last updated on 28/Aug/19
let f(a) =∫_(−∞) ^(+∞)   (dx/((x^2 +1)(a +e^(ix) )))   with a>0  1)find a explicit form of f(a)  2) determine also g(a)=∫_(−∞) ^(+∞)     (dx/((x^2 +1)(a+e^(ix) )^2 ))  3)let I =Re(∫_(−∞) ^(+∞)   (dx/((x^2 +1)(2+e^(ix) )))) and J=Im(∫_(−∞) ^(+∞)  (dx/((x^2 +1)(2+e^x ))))   determine I and J  and  its values.
letf(a)=+dx(x2+1)(a+eix)witha>01)findaexplicitformoff(a)2)determinealsog(a)=+dx(x2+1)(a+eix)23)letI=Re(+dx(x2+1)(2+eix))andJ=Im(+dx(x2+1)(2+ex))determineIandJanditsvalues.
Commented by ~ À ® @ 237 ~ last updated on 29/Aug/19
let change x=tanu   f(a)=∫_(−(π/2)) ^(π/2)   (du/(h(u)))        with   h(u)=a+e^(itanu)        g has only one root on [((−π)/2);(π/2)] let named it  θ  When using the RT    f(a)=2πiRes((1/h),θ) =((2iπ)/(h′(θ)))=((2iπ)/(i(1+tan^2 θ)e^(itanθ) ))   θ root of h ⇒ e^(itanθ) =−a  and  tanθ=π−ilna  So  f(a)=((2π)/(−a(1+π^2 +(lna)^2 −2πilna)))  we can ascertain that  g(a)=(df/da)   When stating  x(a)=1+π^2 +(lna)^2   and  y(a)=2πlna   Re(f(a))=−((2π)/a) ((x(a))/(x^2 (a)+y^2 (a)))  and Im(f(a))=((−2π)/a) ((y(a))/(x^2 (a)+y^2 (a)))
letchangex=tanuf(a)=π2π2duh(u)withh(u)=a+eitanughasonlyonerooton[π2;π2]letnameditθWhenusingtheRTf(a)=2πiRes(1h,θ)=2iπh(θ)=2iπi(1+tan2θ)eitanθθrootofheitanθ=aandtanθ=πilnaSof(a)=2πa(1+π2+(lna)22πilna)wecanascertainthatg(a)=dfdaWhenstatingx(a)=1+π2+(lna)2andy(a)=2πlnaRe(f(a))=2πax(a)x2(a)+y2(a)andIm(f(a))=2πay(a)x2(a)+y2(a)
Commented by mathmax by abdo last updated on 29/Aug/19
thank you sir.
thankyousir.
Commented by mathmax by abdo last updated on 29/Aug/19
1)let consider tbe complex function W(z)=(1/((z^2  +1)(a +e^(iz) )))  ⇒W(z) =(1/((z−i)(z+i)(a+e^(iz) )))  the poles of W are i and −i  residus theorem give ∫_(−∞) ^(+∞)  W(z)dz =2iπ Res(W,i)  Res(W,i) =lim_(z→i)  (z−i)W(z) =(1/((2i)(a+e^(−1) ))) ⇒  ∫_(−∞) ^(+∞)  W(z)dz =2iπ×(1/(2i(a+e^(−1) ))) =(π/(a+e^(−1) )) =((πe)/(ae +1)) ⇒  f(a) =((πe)/(ae +1))  with a>0  2) we have  f^′ (a) =−∫_(−∞) ^(+∞)    (dx/((x^2  +1)(a+e^(ix) )^2 )) =−g(a) ⇒  g(a) =−f^′ (a)   but f(a) =((πe)/(ae +1))  ⇒f^′ (a) =−((πe^2 )/((ae +1)^2 )) ⇒  g(a) =((πe^2 )/((ae +1)^2 )) .
1)letconsidertbecomplexfunctionW(z)=1(z2+1)(a+eiz)W(z)=1(zi)(z+i)(a+eiz)thepolesofWareiandiresidustheoremgive+W(z)dz=2iπRes(W,i)Res(W,i)=limzi(zi)W(z)=1(2i)(a+e1)+W(z)dz=2iπ×12i(a+e1)=πa+e1=πeae+1f(a)=πeae+1witha>02)wehavef(a)=+dx(x2+1)(a+eix)2=g(a)g(a)=f(a)butf(a)=πeae+1f(a)=πe2(ae+1)2g(a)=πe2(ae+1)2.
Commented by mathmax by abdo last updated on 29/Aug/19
3) we have f(a) =∫_(−∞) ^(+∞)   (dx/((x^2  +1)(a +cosx +isinx)))  =∫_(−∞) ^(+∞)   ((a+cosx−isinx)/((x^2  +1)((a+cosx)^2 +sin^2 x)))dx  =∫_(−∞) ^(+∞)   ((a+cosx)/((x^2  +1){a^2  +2acosx +1)}))dx −i ∫_(−∞) ^(+∞)     ((sinx)/((x^2  +1){ a^2  +2acosx +1}))dx  ⇒ Re(f(a)) =∫_(−∞) ^(+∞)    ((a+cosx)/((x^2  +1){ a^2  +2acosx +1}))dx and  Im(f(a)) =∫_(−∞) ^(+∞)   ((sinx dx)/((x^2  +1){a^2  +2acosx +1}))=0 because the   function x →((sinx)/((x^2  +1){a^2  +2a cosx +1})) is odd.
3)wehavef(a)=+dx(x2+1)(a+cosx+isinx)=+a+cosxisinx(x2+1)((a+cosx)2+sin2x)dx=+a+cosx(x2+1){a2+2acosx+1)}dxi+sinx(x2+1){a2+2acosx+1}dxRe(f(a))=+a+cosx(x2+1){a2+2acosx+1}dxandIm(f(a))=+sinxdx(x2+1){a2+2acosx+1}=0becausethefunctionxsinx(x2+1){a2+2acosx+1}isodd.

Leave a Reply

Your email address will not be published. Required fields are marked *