let-f-a-dx-x-4-x-2-a-with-a-1-4-1-calculate-f-a-2-find-also-g-a-dx-x-4-x-2-a-2-3-find-the-value-of-integrals-0-dx-x-4-x-2-3- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 66694 by mathmax by abdo last updated on 18/Aug/19 letf(a)=∫−∞+∞dx(x4+x2+a)witha∈]14,+∞[1)calculatef(a)2)findalsog(a)=∫−∞+∞dx(x4+x2+a)23)findthevalueofintegrals∫0∞dx(x4+x2+3)and∫0∞dx(x4+x2+1)24)developpfatintegrserie. Commented by mathmax by abdo last updated on 19/Aug/19 1)f(a)=∫−∞+∞dxx4+x2+ax4+x2+a=0⇒t2+t+a=0(t=x2)Δ=1−4a<0⇒Δ=(i4a−1)2⇒t1=−1+i4a−12andt2=−1−i4a−12⇒t2+t+a=(t−t1)(t−t2)=(x2−t1)(x2−t2)⇒f(a)=∫−∞+∞dx(x2−t1)(x2−t2)=∫−∞+∞{1x2−t1−1x2−t2}dx=1i4a−1{∫−∞+∞dxx2−t1−∫−∞+∞dxx2−t−1}=1i4a−1{2iIm(∫−∞+∞dxx2−t1)}=24a−1Im(∫−∞+∞dxx2−t1)letcalculate∫−∞+∞dxx2−t1letw(z)=1z2−t1polesofw?∣t1∣=121+4a−1=a⇒t1=ae−iarctan(4a−1)⇒t1=4ae−i2arctan(4a−1)⇒w(z)=1(z−4ae−i2arctan(4a−1))(z+4ae−i2arctan(4a−1))residustheoremgive∫−∞+∞w(z)dz=2iπRes(w,−4ae−i2arctan(4a−1))=2iπ×1−2(4a)e−i2arctan(4a−1)=−iπ(4a)ei2rctan(4a−1)=−iπ(4a){cos(arctan(4a−1)2)+isin(arctan(4a−12)}⇒f(a)=24a−1(−π(4a)cos(arctan(4a−1)2))=−2π4a−1(4a)cos(arctan(4a−1)2)cos2(α2)=1+cos(α)2⇒cos(α2)=+−1+cosα2hereα=arctan4a−1⇒cosα=11+(4a−1)2=12a⇒cos(α2)=+−1+12a2=+−1+2a4a=+−121+2aabutf(a)>0⇒cos(α2)=−121+2a(4a)⇒f(a)=−2π4a−1(4a)2×−121+2a=π1+2aa4a−1⇒f(a)=πa1+2a4a−1witha>14 Commented by mathmax by abdo last updated on 19/Aug/19 2)wehavef′(a)=−∫−∞+∞dx(x4+x2+a)2=−g(a)⇒g(a)=−f′(a)f(a)isknownresttocalculatef′(a) Commented by mathmax by abdo last updated on 19/Aug/19 3)∫0∞dxx4+x2+3=12∫−∞+∞dxx4+x2+3=12f(3)=π231+2311 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: show-that-tan-1-1-x-2-1-x-1-2-tan-1-x-Next Next post: Question-66697 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.