Menu Close

let-f-a-dx-x-4-x-2-a-with-a-1-4-1-calculate-f-a-2-find-also-g-a-dx-x-4-x-2-a-2-3-find-the-value-of-integrals-0-dx-x-4-x-2-3-




Question Number 66694 by mathmax by abdo last updated on 18/Aug/19
let f(a) =∫_(−∞) ^(+∞)   (dx/((x^4 +x^2  +a))) with a∈](1/4),+∞[  1) calculate f(a)  2)find also g(a) =∫_(−∞) ^(+∞)  (dx/((x^4  +x^2 +a)^2 ))  3) find the value of integrals  ∫_0 ^∞  (dx/((x^4  +x^2  +3))) and  ∫_0 ^∞     (dx/((x^4  +x^2  +1)^2 ))  4) developp f at integrserie.
letf(a)=+dx(x4+x2+a)witha]14,+[1)calculatef(a)2)findalsog(a)=+dx(x4+x2+a)23)findthevalueofintegrals0dx(x4+x2+3)and0dx(x4+x2+1)24)developpfatintegrserie.
Commented by mathmax by abdo last updated on 19/Aug/19
1) f(a) =∫_(−∞) ^(+∞)  (dx/(x^4  +x^2  +a))  x^4  +x^2  +a =0 ⇒t^2  +t +a=0 (t=x^2 )  Δ=1−4a<0 ⇒Δ =(i(√(4a−1)))^2  ⇒t_1 =((−1+i(√(4a−1)))/2) and  t_2 =((−1−i(√(4a−1)))/2) ⇒t^2  +t+a =(t−t_1 )(t−t_2 )=(x^2 −t_1 )(x^2 −t_2 ) ⇒  f(a) =∫_(−∞) ^(+∞)  (dx/((x^2 −t_1 )(x^2 −t_2 ))) = ∫_(−∞) ^(+∞) {(1/(x^2 −t_1 ))−(1/(x^2 −t_2 ))}dx  =(1/(i(√(4a−1)))){ ∫_(−∞) ^(+∞)  (dx/(x^2 −t_1 )) −∫_(−∞) ^(+∞)  (dx/(x^2 −t_1 ^− ))}  =(1/(i(√(4a−1)))){2i Im( ∫_(−∞) ^(+∞)  (dx/(x^2 −t_1 )))} =(2/( (√(4a−1)))) Im(∫_(−∞) ^(+∞)   (dx/(x^2 −t_1 )))  let calculate ∫_(−∞) ^(+∞)  (dx/(x^2 −t_1 )) let w(z) =(1/(z^2 −t_1 ))   poles of w?  ∣t_1 ∣ =(1/2)(√(1+4a−1))=(√a) ⇒t_1 =(√a)e^(−iarctan((√(4a−1))))   ⇒(√t_1 )=^4 (√a)e^(−(i/2)arctan((√(4a−1))))  ⇒ w(z) =(1/((z−^4 (√a)e^(−(i/2)arctan((√(4a−1)))) )(z+^4 (√a)e^(−(i/2)arctan((√(4a−1)))) )))  residus theorem give   ∫_(−∞) ^(+∞) w(z)dz =2iπ Res(w,−^4 (√a)e^(−(i/2)arctan((√(4a−1)))) )  =2iπ×(1/(−2(^4 (√a))e^(−(i/2)arctan((√(4a−1)))) )) =−((iπ)/((^4 (√a)))) e^((i/2)rctan((√(4a−1))))   =((−iπ)/((^4 (√a)))){ cos(((arctan((√(4a−1))))/2))+i sin(((arctan((√(4a−1)))/2))} ⇒  f(a) =(2/( (√(4a−1))))(((−π)/((^4 (√a)))) cos(((arctan((√(4a−1))))/2)))  =((−2π)/( (√(4a−1))(^4 (√a)))) cos(((arctan((√(4a−1))))/2))  cos^2 ((α/2)) =((1+cos(α))/2) ⇒cos((α/2))=+^− (√((1+cosα)/2))  here α=arctan(√(4a−1)) ⇒ cosα =(1/( (√(1+((√(4a−1)))^2 )))) =(1/(2(√a))) ⇒  cos((α/2)) =+^− (√((1+(1/(2(√a))))/2))=+^− (√((1+2(√a))/(4(√a))))=+^− (1/2)(√((1+2(√a))/( (√a))))  but f(a)>0 ⇒cos((α/2))=−(1/2)((√(1+2(√a)))/((^4 (√a)))) ⇒  f(a) =((−2π)/( (√(4a−1))(^4 (√a))^2 ))×((−1)/2)(√(1+2(√a)))=((π(√(1+2(√a))))/( (√a)(√(4a−1)))) ⇒  f(a) =(π/( (√a)))(√((1+2(√a))/(4a−1)))  with a>(1/4)
1)f(a)=+dxx4+x2+ax4+x2+a=0t2+t+a=0(t=x2)Δ=14a<0Δ=(i4a1)2t1=1+i4a12andt2=1i4a12t2+t+a=(tt1)(tt2)=(x2t1)(x2t2)f(a)=+dx(x2t1)(x2t2)=+{1x2t11x2t2}dx=1i4a1{+dxx2t1+dxx2t1}=1i4a1{2iIm(+dxx2t1)}=24a1Im(+dxx2t1)letcalculate+dxx2t1letw(z)=1z2t1polesofw?t1=121+4a1=at1=aeiarctan(4a1)t1=4aei2arctan(4a1)w(z)=1(z4aei2arctan(4a1))(z+4aei2arctan(4a1))residustheoremgive+w(z)dz=2iπRes(w,4aei2arctan(4a1))=2iπ×12(4a)ei2arctan(4a1)=iπ(4a)ei2rctan(4a1)=iπ(4a){cos(arctan(4a1)2)+isin(arctan(4a12)}f(a)=24a1(π(4a)cos(arctan(4a1)2))=2π4a1(4a)cos(arctan(4a1)2)cos2(α2)=1+cos(α)2cos(α2)=+1+cosα2hereα=arctan4a1cosα=11+(4a1)2=12acos(α2)=+1+12a2=+1+2a4a=+121+2aabutf(a)>0cos(α2)=121+2a(4a)f(a)=2π4a1(4a)2×121+2a=π1+2aa4a1f(a)=πa1+2a4a1witha>14
Commented by mathmax by abdo last updated on 19/Aug/19
2)  we have f^′ (a) =−∫_(−∞) ^(+∞)  (dx/((x^4  +x^2  +a)^2 )) =−g(a) ⇒  g(a)=−f^′ (a)     f(a) is known rest to calculate f^′ (a)
2)wehavef(a)=+dx(x4+x2+a)2=g(a)g(a)=f(a)f(a)isknownresttocalculatef(a)
Commented by mathmax by abdo last updated on 19/Aug/19
3) ∫_0 ^∞   (dx/(x^4  +x^2  +3)) =(1/2)∫_(−∞) ^(+∞)  (dx/(x^4  +x^2  +3)) =(1/2)f(3)  =(π/(2(√3)))(√((1+2(√3))/(11)))
3)0dxx4+x2+3=12+dxx4+x2+3=12f(3)=π231+2311

Leave a Reply

Your email address will not be published. Required fields are marked *