Menu Close

Let-f-R-R-be-a-function-such-that-f-x-x-3-x-2-f-1-xf-2-f-3-for-x-R-1-What-is-f-1-equal-to-2-What-is-f-1-equal-to-3-What-is-f-10-equal-to-For-this-question-consider-the-following-




Question Number 10118 by Gaurav3651 last updated on 25/Jan/17
Let f:R→R be a function such that  f(x)=x^3 +x^2 f′(1)+xf′′(2)+f′′′(3)  for x∈R.  1)What is f(1) equal to?  2)What is f′(1) equal to?  3)What is f′′′(10) equal to?  For this question consider the following:  1) f(2)=f(1)−f(0)  2)f′′(2)−2f′(1)=12  which is/are correct?
Letf:RRbeafunctionsuchthatf(x)=x3+x2f(1)+xf(2)+f(3)forxR.1)Whatisf(1)equalto?2)Whatisf(1)equalto?3)Whatisf(10)equalto?Forthisquestionconsiderthefollowing:1)f(2)=f(1)f(0)2)f(2)2f(1)=12whichis/arecorrect?
Commented by nume1114 last updated on 25/Jan/17
Answer  1)f(1)=4  2)f′(1)=−5  3)f′′′(10)=6    1) f(2)=f(1)−f(0)  2)f′′(2)−2f′(1)=12  Both of these are correct.
Answer1)f(1)=42)f(1)=53)f(10)=61)f(2)=f(1)f(0)2)f(2)2f(1)=12Bothofthesearecorrect.
Answered by nume1114 last updated on 25/Jan/17
f(x)=x^3 +x^2 f′(1)+xf′′(2)+f′′′(3) ...(A)  f′(x)=3x^2 +2xf′(1)+f′′(2) ...(B)  f′′(x)=6x+2f′(1) ...(C)  f′′′(x)=6 ...(D)  (D)⇒f′′′(3)=6 ...(E)          ⇒f′′′(10)=6  (B)⇒f′(1)=3+2f′(1)+f′′(2)          ⇒f′(1)+f′′(2)=−3 ...(F)  (C)⇒f′′(2)=12+2f′(1) ...(G)          ⇒f′′(2)−2f′(1)=^! 12  (F),(G)⇒f′(1)+[12+2f′(1)]=−3                   ⇒f′(1)=−5 ...(H)                   ⇒f′′(2)=2 ...(I)  (A),(E),(H),(I)  ⇒f(x)=x^3 −5x^2 +2x+6  ⇒f(1)=4  ⇒f(2)=−2  ⇒f(0)=6  ⇒f(2)=^! f(1)−f(0)
f(x)=x3+x2f(1)+xf(2)+f(3)(A)f(x)=3x2+2xf(1)+f(2)(B)f(x)=6x+2f(1)(C)f(x)=6(D)(D)f(3)=6(E)f(10)=6(B)f(1)=3+2f(1)+f(2)f(1)+f(2)=3(F)(C)f(2)=12+2f(1)(G)f(2)2f(1)=!12(F),(G)f(1)+[12+2f(1)]=3f(1)=5(H)f(2)=2(I)(A),(E),(H),(I)f(x)=x35x2+2x+6f(1)=4f(2)=2f(0)=6f(2)=!f(1)f(0)

Leave a Reply

Your email address will not be published. Required fields are marked *