Menu Close

let-f-sin-e-x-e-x-x-2-2-dx-with-0-1-detdrmine-a-explicit-form-of-f-2-calculate-f-at-form-ofintergral-and-find-its-value-




Question Number 77752 by abdomathmax last updated on 09/Jan/20
let f(λ) =∫_(−∞) ^(+∞)  ((sin( λe^x  +e^(−x) ))/(x^2  +λ^2 ))dx with λ≥0  1) detdrmine a explicit form of f(λ)  2) calculate f^′ (λ) at form ofintergral and find  its value.
letf(λ)=+sin(λex+ex)x2+λ2dxwithλ01)detdrmineaexplicitformoff(λ)2)calculatef(λ)atformofintergralandfinditsvalue.
Commented by mathmax by abdo last updated on 10/Jan/20
f(λ)=∫_(−∞) ^(+∞)  ((sin(λe^x  +e^(−x) ))/(x^2  +λ^2 )) ⇒f(λ)=_(x=λt)   ∫_(−∞) ^(+∞)  ((sin(λ e^(λt)  +e^(−λt) ))/(λ^2 (t^2  +1)))λ(dt)  =(1/λ) ∫_(−∞) ^(+∞)  ((sin(λ e^(λt)  +e^(−λt) ))/(t^2  +1))dt    (  we take λ>0) ⇒  λf(λ) =Im(∫_(−∞) ^(+∞)  (e^(i( λe^(λt) +e^(−λt) )) /(t^2  +1))dt)let W(z)=(e^(i(λ e^(λz)  +e^(−λz) )) /(z^2  +1))  ⇒W(z) =(e^(i(λ e^(λz)  +e^(−λz) )) /((z−i)(z+i))) and ∫_(−∞) ^(+∞)  W(z)dz =2iπ Res(W,i)  =2iπ ×(e^(i(λ e^(iλ)  +e^(−iλ) )) /(2i))  we have   i(λ e^(iλ)  +e^(−iλ) ) =i(λ cos(λ)+λi sin(λ) +cos(λ)−isin(λ))  =i λ cos(λ)−λsin(λ) +icos(λ) +sinλ  =(1−λ)sinλ +i(1+λ)cos(λ) ⇒  e^(i(λ e^(iλ)  +e^(−iλ)) )  =e^((1−λ)sin(λ)) { cos(1+λ)cosλ +isin(1+λ)cosλ} ⇒  ∫_(−∞) ^(+∞)  W(z)dz =π e^((1−λ)sinλ)  cos((1+λ)cosλ) +i π e^((1−λ)sinλ) sin((1+λ)cosλ)  ⇒λ f(λ) =π e^((1−λ)sinλ)  sin{(1+λ)cosλ} ⇒  f(λ) =(π/λ)e^((1−λ)sinλ)  sin{(1+λ)cosλ}     (λ>0)
f(λ)=+sin(λex+ex)x2+λ2f(λ)=x=λt+sin(λeλt+eλt)λ2(t2+1)λ(dt)=1λ+sin(λeλt+eλt)t2+1dt(wetakeλ>0)λf(λ)=Im(+ei(λeλt+eλt)t2+1dt)letW(z)=ei(λeλz+eλz)z2+1W(z)=ei(λeλz+eλz)(zi)(z+i)and+W(z)dz=2iπRes(W,i)=2iπ×ei(λeiλ+eiλ)2iwehavei(λeiλ+eiλ)=i(λcos(λ)+λisin(λ)+cos(λ)isin(λ))=iλcos(λ)λsin(λ)+icos(λ)+sinλ=(1λ)sinλ+i(1+λ)cos(λ)ei(λeiλ+eiλ)=e(1λ)sin(λ){cos(1+λ)cosλ+isin(1+λ)cosλ}+W(z)dz=πe(1λ)sinλcos((1+λ)cosλ)+iπe(1λ)sinλsin((1+λ)cosλ)λf(λ)=πe(1λ)sinλsin{(1+λ)cosλ}f(λ)=πλe(1λ)sinλsin{(1+λ)cosλ}(λ>0)

Leave a Reply

Your email address will not be published. Required fields are marked *