Question Number 141933 by mathmax by abdo last updated on 24/May/21
$$\mathrm{let}\:\mathrm{f}\left(\mathrm{t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{logx}}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{t}^{\mathrm{2}} }\mathrm{dx}\:\:\:\left(\mathrm{t}>\mathrm{0}\right) \\ $$$$\left.\mathrm{1}\right)\mathrm{calculate}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{t}\right)\:\:\mathrm{and}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{integr}\:\mathrm{serie} \\ $$
Commented by Mathspace last updated on 24/May/21
$${f}^{\left({n}\right)} \left(\mathrm{1}\right) \\ $$