Menu Close

let-f-U-R-n-R-p-be-an-application-where-U-is-an-open-set-prove-that-x-U-h-R-n-such-as-x-h-U-




Question Number 71548 by Cmr 237 last updated on 17/Oct/19
let f:U⊂R^n →R^p  be an application  where U is an open set  prove that ∀x∈U,∃h∈R^n such as  x+h∈U
$$\mathrm{let}\:\mathrm{f}:\boldsymbol{\mathrm{U}}\subset\mathbb{R}^{\mathrm{n}} \rightarrow\mathbb{R}^{\mathrm{p}} \:\mathrm{be}\:\mathrm{an}\:\mathrm{application} \\ $$$$\mathrm{where}\:\boldsymbol{\mathrm{U}}\:\mathrm{is}\:\mathrm{an}\:\mathrm{open}\:\mathrm{set} \\ $$$$\mathrm{prove}\:\mathrm{that}\:\forall\mathrm{x}\in\boldsymbol{{U}},\exists\mathrm{h}\in\mathbb{R}^{\mathrm{n}} \mathrm{such}\:\mathrm{as} \\ $$$$\mathrm{x}+\mathrm{h}\in\boldsymbol{{U}} \\ $$
Answered by mind is power last updated on 17/Oct/19
U is open ⇒∃ ε>0 such that B(x,ε)⊂U  we have B(x,ε) is a convex   (1+(ε/2))x∈B(x,ε)⊂U⇒(1+(ε/2))x∈U
$$\mathrm{U}\:\mathrm{is}\:\mathrm{open}\:\Rightarrow\exists\:\varepsilon>\mathrm{0}\:\mathrm{such}\:\mathrm{that}\:\mathrm{B}\left(\mathrm{x},\varepsilon\right)\subset\mathrm{U} \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{B}\left(\mathrm{x},\varepsilon\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{convex}\: \\ $$$$\left(\mathrm{1}+\frac{\varepsilon}{\mathrm{2}}\right)\mathrm{x}\in\mathrm{B}\left(\mathrm{x},\varepsilon\right)\subset\mathrm{U}\Rightarrow\left(\mathrm{1}+\frac{\varepsilon}{\mathrm{2}}\right)\mathrm{x}\in\mathrm{U} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *