Menu Close

let-f-x-0-1-dt-1-x-1-t-2-with-x-gt-0-1-detemine-a-explicit-form-of-f-x-2-find-also-g-x-0-1-1-t-2-1-x-1-t-2-2-dt-3-find-the-value-of-integrals-0-1-dt-




Question Number 65773 by mathmax by abdo last updated on 03/Aug/19
let f(x) =∫_0 ^1   (dt/(1+x(√(1+t^2 ))))  with x>0  1)detemine a explicit form of f(x)  2)find also  g(x) =∫_0 ^1   ((√(1+t^2 ))/((1+x(√(1+t^2 )))^2 ))dt  3) find the value of integrals  ∫_0 ^1  (dt/(1+2(√(1+t^2 )))) and   ∫_0 ^1      (dt/((1+2(√(1+t^2 )))^2 ))
letf(x)=01dt1+x1+t2withx>01)detemineaexplicitformoff(x)2)findalsog(x)=011+t2(1+x1+t2)2dt3)findthevalueofintegrals01dt1+21+t2and01dt(1+21+t2)2
Commented by mathmax by abdo last updated on 06/Aug/19
2)we have f^′ (x) =−∫_0 ^1   (((√(1+t^2 ))dt)/((1+x(√(1+t^2 )))^2 )) =−g(x) ⇒g(x)=−f^′ (x)  rest to calculate f^′ (x)  3)changement t =sht give I=∫_0 ^1  (dt/(1+2(√(1+t^2 ))))  =∫_0 ^(ln(1+(√2)))    ((ch(t)dt)/(1+2ch(t))) =∫_0 ^(ln(1+(√2)))   (((e^t  +e^(−t) )/2)/(1+2((e^t  +e^(−t) )/2)))dt  =(1/2)∫_0 ^(ln(1+(√2)))    ((e^t  +e^(−t) )/(1+e^t  +e^(−t) ))dt  =_(e^t =x)     (1/2)∫_1 ^(1+(√2))    ((x+x^(−1) )/(1+x+x^(−1) ))(dx/x)  =(1/2) ∫_1 ^(1+(√2))    ((x^2  +1)/(x^2 (1+x+x^(−1) )))dx =(1/2)∫_1 ^(1+(√2))   ((x^2  +1)/(x^2  +x^3  +x))dx  =(1/2)∫_1 ^(1+(√2))    ((x^2  +1)/(x(x^2  +x+1)))dx  let decomposeF(x)=((x^2  +1)/(x(x^2  +x+1)))  F(x) =(a/x) +((bx+c)/(x^2  +x+1))  a =lim_(x→0) xF(x) =1  lim_(x→+∞) xF(x) =1 =a+b ⇒b=1−a=0 ⇒F(x)=(1/x) +(c/(x^2  +x+1))  F(1) =(2/3) =1 +(c/3) ⇒2 =3 +c ⇒c =−1⇒F(x)=(1/x)−(1/(x^2  +x+1))  ⇒ I =(1/2){ ∫_1 ^(1+(√2)) (dx/x)−∫_1 ^(1+(√2))   (dx/(x^2  +x+1))}  =(1/2)ln(1+(√2))−(1/2)∫_1 ^(1+(√2))   (dx/(x^2  +x+1))  ∫_1 ^(1+(√2))   (dx/(x^2  +x+1)) =∫_1 ^(1+(√2))   (dx/((x+(1/2))^2  +(3/4))) =_(x+(1/2)=((√3)/2)u)  (4/3)  ∫_(√3) ^((3+2(√2))/3)  (1/(1+u^2 ))((√3)/2)du  = (2/( (√3))) [arctanu]_(√3) ^((3+2(√2))/3)  =(2/( (√3))){ arctan(((3+2(√2))/3))−arctan((√3))}⇒  I =(1/2)ln(1+(√2))−(1/( (√3))){arctan(((3+2(√2))/3))−arctan((√3))}
2)wehavef(x)=011+t2dt(1+x1+t2)2=g(x)g(x)=f(x)resttocalculatef(x)3)changementt=shtgiveI=01dt1+21+t2=0ln(1+2)ch(t)dt1+2ch(t)=0ln(1+2)et+et21+2et+et2dt=120ln(1+2)et+et1+et+etdt=et=x1211+2x+x11+x+x1dxx=1211+2x2+1x2(1+x+x1)dx=1211+2x2+1x2+x3+xdx=1211+2x2+1x(x2+x+1)dxletdecomposeF(x)=x2+1x(x2+x+1)F(x)=ax+bx+cx2+x+1a=limx0xF(x)=1limx+xF(x)=1=a+bb=1a=0F(x)=1x+cx2+x+1F(1)=23=1+c32=3+cc=1F(x)=1x1x2+x+1I=12{11+2dxx11+2dxx2+x+1}=12ln(1+2)1211+2dxx2+x+111+2dxx2+x+1=11+2dx(x+12)2+34=x+12=32u4333+22311+u232du=23[arctanu]33+223=23{arctan(3+223)arctan(3)}I=12ln(1+2)13{arctan(3+223)arctan(3)}
Commented by mathmax by abdo last updated on 06/Aug/19
1)f(x) =∫_0 ^1   (dt/(1+x(√(1+t^2 ))))  changement t =sh(u) give  f(x)=∫_0 ^(ln(1+(√2)))   ((chu)/(1+xchu))du =∫_0 ^(ln(1+(√2)))    (((e^u +e^(−u) )/2)/(1+x((e^u +e^(−u) )/2)))du  = ∫_0 ^(ln(1+(√2)))     ((e^u +e^(−u) )/(2 +xe^u  +x e^(−u) )) du  =_(e^u =z)    ∫_1 ^(1+(√2)) ((z+z^(−1) )/(2+xz+xz^(−1) ))(dz/z)  = ∫_1 ^(1+(√2))      ((z^2  +1)/(z^2 (2+xz +xz^(−1) )))dz =∫_1 ^(1+(√2))   ((z^2  +1)/(2z^2  +xz^3  +xz))dz  =∫_1 ^(1+(√2))   ((z^2  +1)/(z(xz^2  +2z+x)))dz let decomposeF(z) =((z^2  +1)/(z(xz^2  +2z+x)))  xz^2  +2z +x =0 →Δ^′  =1−x^2   case 1  1−x^2 >0 ⇒0<x<1 ⇒z_1 =((−1+(√(1−x^2 )))/x)  z_2 =((−1−(√(1−x^2 )))/x) ⇒F(z) =((z^2  +1)/(xz(z−z_1 )(z−z_2 )))  =(a/z) +(b/(z−z_1 )) +(c/(z−z_2 ))  a =lim_(z→0) zF(z) =(1/x)  b =lim_(z→z_1 )   (z−z_1 )F(z) =((z_1 ^2  +1)/(xz_1 (z_1 −z_2 )))   c =lim_(z→z_2 )   (z−z_2 )F(z) =((z_2 ^2  +1)/(xz_2 (z_2 −z_1 ))) ⇒  f(x) =∫_1 ^(1+(√2)) F(z)dz =[aln∣z∣+bln∣z−z_1 ∣+cln∣z−z_2 ∣]_1 ^(1+(√2))   =aln(1+(√2))+bln∣1+(√2)−z_1 ∣+cln∣1+(√2)−z_2 ∣−bln∣1−z_1 ∣  −cln∣1−z_2 ∣  case 2  1−x^2 <0 ⇒x>1  f(x)=∫_1 ^(1+(√2))  ((z^2  +1)/(z(xz^2  +2z +x)))dz  F(z) =(a/z) +((bz +c)/(xz^2  +2z +x))  a =(1/x)  lim_(z→+∞)  zF(z) =(1/x) =a+(b/x) ⇒1 =ax +b ⇒b=1−ax=0 ⇒  F(z) =(1/(xz)) +(c/(xz^2  +2z +x))  F(1) =(2/((2x+2))) =(1/(x+1)) =(1/x) +(c/(2x+2)) ⇒1 =((x+1)/x) +(c/2) ⇒  (c/2) =−(1/x) ⇒c =((−2)/x) ⇒ F(z) =(1/(xz))−(2/x)(1/((xz^2  +2z +x)))  =(1/x){ (1/z)−(2/(xz^2  +2z +x))} ⇒f(x) =(1/x){ ∫_1 ^(1+(√2))  (dz/z)−2∫_1 ^(1+(√2))  (dz/(xz^2  +2z+x))}  =(1/x)ln(1+(√2))−(2/x) ∫_1 ^(1+(√2))     (dz/(xz^2  +2z +x)) =....
1)f(x)=01dt1+x1+t2changementt=sh(u)givef(x)=0ln(1+2)chu1+xchudu=0ln(1+2)eu+eu21+xeu+eu2du=0ln(1+2)eu+eu2+xeu+xeudu=eu=z11+2z+z12+xz+xz1dzz=11+2z2+1z2(2+xz+xz1)dz=11+2z2+12z2+xz3+xzdz=11+2z2+1z(xz2+2z+x)dzletdecomposeF(z)=z2+1z(xz2+2z+x)xz2+2z+x=0Δ=1x2case11x2>00<x<1z1=1+1x2xz2=11x2xF(z)=z2+1xz(zz1)(zz2)=az+bzz1+czz2a=limz0zF(z)=1xb=limzz1(zz1)F(z)=z12+1xz1(z1z2)c=limzz2(zz2)F(z)=z22+1xz2(z2z1)f(x)=11+2F(z)dz=[alnz+blnzz1+clnzz2]11+2=aln(1+2)+bln1+2z1+cln1+2z2bln1z1cln1z2case21x2<0x>1f(x)=11+2z2+1z(xz2+2z+x)dzF(z)=az+bz+cxz2+2z+xa=1xlimz+zF(z)=1x=a+bx1=ax+bb=1ax=0F(z)=1xz+cxz2+2z+xF(1)=2(2x+2)=1x+1=1x+c2x+21=x+1x+c2c2=1xc=2xF(z)=1xz2x1(xz2+2z+x)=1x{1z2xz2+2z+x}f(x)=1x{11+2dzz211+2dzxz2+2z+x}=1xln(1+2)2x11+2dzxz2+2z+x=.