let-f-x-0-1-dt-ch-t-xsh-t-1-find-a-explicit-form-of-f-x-2-determine-g-x-0-1-dt-ch-t-xsh-t-2-3-calculate-0-1-dt-ch-t-3sh-t-and-0-1-dt-ch-t-3sh-t- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 66062 by mathmax by abdo last updated on 08/Aug/19 letf(x)=∫01dtch(t)+xsh(t)1)findaexplicitformoff(x)2)determineg(x)=∫01dt(ch(t)+xsh(t))23)calculate∫01dtch(t)+3sh(t)and∫01dt{ch(t)+3sh(t)}2 Commented by mathmax by abdo last updated on 11/Aug/19 1)wehavef(x)=∫01dtch(t)+xsh(t)⇒f(x)=∫012dtet+e−t+x(et−e−t)=∫012dt(1+x)et+(1−x)e−tchangementet=ugivef(x)=∫1e2(1+x)u+(1−x)u−1duu=∫1e2du(1+x)u2+(1−x)=21+x∫1eduu2+1−x1+xcase11−x1+x>0⇒∣x∣<1wedothechangementu=1−x1+xz⇒f(x)=21+x∫1+x1−xe1+x1−x1+x1−x11+z21−x1+xdz=21−x1−x1+x[arctan(z)]1+x1−xe1+x1−x=21−x2{arctan(e1+x1−x)−arctan(1+x1−x)}case21−x1−x<0⇒∣x∣>1⇒f(x)=2x+1∫1eduu2−(x−1x+1)2=u=x−1x+1z2x+1∫x+1x−1ex+1x−1x+1x−11z2−1x−1x+1dz=1x−1x−1x+1∫x+1x−1ex+1x−1{1z−1−1z+1}dz=1x2−1[ln∣z−1z+1∣]x+1x−1ex+1x−1=1x2−1{ln∣ex+1x−1−1ex+1x−1+1∣−ln∣x+1x−1−1x+1x−1+1∣}⇒f(x)=1x2−1{ln∣ex+1−x−1ex+1+x−1∣−ln∣x+1−x−1x+1+x−1∣} Commented by mathmax by abdo last updated on 11/Aug/19 2)sorryg(x)=∫01sh(t)dt(ch(t)+xsh(t))2wehavef′(x)=−∫11sh(t)(ch(t)+xsh(t))2=−g(x)⇒g(x)=−f′(x)resttocalculatef′(x) Commented by mathmax by abdo last updated on 11/Aug/19 3)∫01dtch(t)+3sh(t)=f(3)=122{ln(2e−22e+2)−ln(2−22+2)} Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-131599Next Next post: Question-131602 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.