Menu Close

let-f-x-0-1-dt-ch-t-xsh-t-1-find-a-explicit-form-of-f-x-2-determine-g-x-0-1-dt-ch-t-xsh-t-2-3-calculate-0-1-dt-ch-t-3sh-t-and-0-1-dt-ch-t-3sh-t-




Question Number 66062 by mathmax by abdo last updated on 08/Aug/19
let f(x) =∫_0 ^1    (dt/(ch(t)+xsh(t)))  1) find a explicit form of f(x)  2) determine g(x) =∫_0 ^1   (dt/((ch(t)+xsh(t))^2 ))  3) calculate ∫_0 ^1    (dt/(ch(t)+3sh(t))) and ∫_0 ^1   (dt/({ch(t)+3sh(t)}^2 ))
letf(x)=01dtch(t)+xsh(t)1)findaexplicitformoff(x)2)determineg(x)=01dt(ch(t)+xsh(t))23)calculate01dtch(t)+3sh(t)and01dt{ch(t)+3sh(t)}2
Commented by mathmax by abdo last updated on 11/Aug/19
1) we have f(x)=∫_0 ^1  (dt/(ch(t)+xsh(t))) ⇒  f(x)=∫_0 ^1   ((2dt)/(e^t  +e^(−t)  +x(e^t −e^(−t) ))) =∫_0 ^1  ((2dt)/((1+x)e^t  +(1−x)e^(−t) ))  changement e^t =u give f(x)=∫_1 ^e   (2/((1+x)u +(1−x)u^(−1) ))(du/u)  =∫_1 ^e    ((2du)/((1+x)u^2 +(1−x))) =(2/(1+x)) ∫_1 ^e  (du/(u^2  +((1−x)/(1+x))))  case 1  ((1−x)/(1+x))>0 ⇒∣x∣<1   we do the changement u=(√((1−x)/(1+x)))z ⇒  f(x) =(2/(1+x)) ∫_(√((1+x)/(1−x))) ^(e(√((1+x)/(1−x))))     ((1+x)/(1−x)) (1/(1+z^2 )) (√((1−x)/(1+x)))dz  =(2/(1−x))((√(1−x))/( (√(1+x)))) [arctan(z)]_(√((1+x)/(1−x))) ^(e(√((1+x)/(1−x))))   =(2/( (√(1−x^2 )))){ arctan(e(√((1+x)/(1−x))))−arctan((√((1+x)/(1−x))))}  case 2  ((1−x)/(1−x))<0 ⇒∣x∣>1 ⇒f(x)=(2/(x+1)) ∫_1 ^e   (du/(u^2 −((√((x−1)/(x+1))))^2 ))  =_(u=(√((x−1)/(x+1)))z)     (2/(x+1)) ∫_(√((x+1)/(x−1))) ^(e(√((x+1)/(x−1))))     ((x+1)/(x−1)) (1/(z^2 −1))(√((x−1)/(x+1)))dz  =(1/(x−1))((√(x−1))/( (√(x+1)))) ∫_(√((x+1)/(x−1))) ^(e(√((x+1)/(x−1))))     {(1/(z−1))−(1/(z+1))}dz  =(1/( (√(x^2 −1))))[ln∣((z−1)/(z+1))∣]_(√((x+1)/(x−1))) ^(e(√((x+1)/(x−1))))    =(1/( (√(x^2 −1)))){ln∣((((e(√(x+1)))/( (√(x−1))))−1)/(((e(√(x+1)))/( (√(x−1))))+1))∣  −ln∣((((√(x+1))/( (√(x−1))))−1)/(((√(x+1))/( (√(x−1))))+1))∣} ⇒  f(x)=(1/( (√(x^2 −1)))){ln∣((e(√(x+1))−(√(x−1)))/(e(√(x+1))+(√(x−1))))∣−ln∣(((√(x+1))−(√(x−1)))/( (√(x+1))+(√(x−1))))∣}
1)wehavef(x)=01dtch(t)+xsh(t)f(x)=012dtet+et+x(etet)=012dt(1+x)et+(1x)etchangementet=ugivef(x)=1e2(1+x)u+(1x)u1duu=1e2du(1+x)u2+(1x)=21+x1eduu2+1x1+xcase11x1+x>0⇒∣x∣<1wedothechangementu=1x1+xzf(x)=21+x1+x1xe1+x1x1+x1x11+z21x1+xdz=21x1x1+x[arctan(z)]1+x1xe1+x1x=21x2{arctan(e1+x1x)arctan(1+x1x)}case21x1x<0⇒∣x∣>1f(x)=2x+11eduu2(x1x+1)2=u=x1x+1z2x+1x+1x1ex+1x1x+1x11z21x1x+1dz=1x1x1x+1x+1x1ex+1x1{1z11z+1}dz=1x21[lnz1z+1]x+1x1ex+1x1=1x21{lnex+1x11ex+1x1+1lnx+1x11x+1x1+1}f(x)=1x21{lnex+1x1ex+1+x1lnx+1x1x+1+x1}
Commented by mathmax by abdo last updated on 11/Aug/19
2) sorry g(x) =∫_0 ^1  ((sh(t)dt)/((ch(t)+xsh(t))^2 ))  we have f^′ (x)=−∫_1 ^1   ((sh(t))/((ch(t)+xsh(t))^2 )) =−g(x) ⇒  g(x)=−f^′ (x) rest to calculate f^′ (x)
2)sorryg(x)=01sh(t)dt(ch(t)+xsh(t))2wehavef(x)=11sh(t)(ch(t)+xsh(t))2=g(x)g(x)=f(x)resttocalculatef(x)
Commented by mathmax by abdo last updated on 11/Aug/19
3) ∫_0 ^1    (dt/(ch(t)+3sh(t))) =f(3)=(1/(2(√2))){ln(((2e−(√2))/(2e+(√2))))−ln(((2−(√2))/(2+(√2))))}
3)01dtch(t)+3sh(t)=f(3)=122{ln(2e22e+2)ln(222+2)}

Leave a Reply

Your email address will not be published. Required fields are marked *