let-f-x-0-2-x-t-2-dt-with-x-0-1-calculate-f-x-2-calculate-g-x-0-2-dt-x-t-2-3-find-the-value-of-0-2-4-t-2-dt-and-0-2-dt-3-t-2-4-give-g-x-at-form-of-i Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 66801 by mathmax by abdo last updated on 19/Aug/19 letf(x)=∫02x+t2dtwithx⩾01)calculatef(x)2)calculateg(x)=∫02dtx+t23)findthevalue[of∫024+t2dtand∫02dt3+t24)giveg′(x)atformofintegral. Commented by mathmax by abdo last updated on 21/Aug/19 1)f(x)=∫02x+t2dtchangementt=xugivef(x)=∫02xx1+u2xdu=x∫02x1+u2duchangementu=shzgivef(x)=x∫0argsh(2x)ch(z)ch(z)ez=x2∫0argsh(2x)(ch(2z)+1)dz=x4[sh(2z)]0ln(2x+1+4x)+x2ln(2x+1+4x)=x8[e2z−e−2z]0ln(2+x+4x)+x2ln(2+x+4x)⇒f(x)=x8{(2+x+4x)2−1(2+x+4x)2}+x2ln(2+x+4x)2)wehavef′(x)=∫0212x+t2dt=12g(x)⇒g(x)=2f′(x)resttocalculatef′(x)..becontinued… Commented by mathmax by abdo last updated on 21/Aug/19 3)wehave∫024+t2dt=f(4)=12{(2+222)2−1(2+222)2+2ln(2+222)=12{(1+2)2−1(1+2)2}+2ln(1+2)∫02dt3+t2=t=3u∫0233du31+u2=∫023du1+u2=[ln(u+1+u2)]023=ln(23+1+43)=ln(2+73) Commented by mathmax by abdo last updated on 21/Aug/19 4)wehaveg(x)=∫02(x+t2)−12dt⇒g′(x)=∫02−12(x+t2)−32dt=−12∫02dt(x+t2)x+t2. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: very-nice-integral-4x-3-4x-2-4x-3-x-2-1-x-2-x-1-2-dx-Next Next post: prove-that-r-k-n-r-1-2-n-n-1-show-with-a-diagram-that-the-volume-of-a-parallepipe-is-a-b-c- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.