Menu Close

let-f-x-0-2-x-t-2-dt-with-x-0-1-calculate-f-x-2-calculate-g-x-0-2-dt-x-t-2-3-find-the-value-of-0-2-4-t-2-dt-and-0-2-dt-3-t-2-4-give-g-x-at-form-of-i




Question Number 66801 by mathmax by abdo last updated on 19/Aug/19
let f(x) =∫_0 ^2 (√(x+t^2 ))dt   with x≥0  1) calculate f(x)  2)calculate g(x) =∫_0 ^2  (dt/( (√(x+t^2 ))))  3)find the value[of ∫_0 ^2 (√(4+t^2 ))dt and ∫_0 ^2 (dt/( (√(3+t^2 ))))  4) give g^′ (x) at form of integral.
letf(x)=02x+t2dtwithx01)calculatef(x)2)calculateg(x)=02dtx+t23)findthevalue[of024+t2dtand02dt3+t24)giveg(x)atformofintegral.
Commented by mathmax by abdo last updated on 21/Aug/19
1) f(x)=∫_0 ^2 (√(x+t^2 ))dt   changement t =(√x)u give   f(x)=∫_0 ^(2/( (√x)))   (√x)(√(1+u^2 ))(√x)du =x ∫_0 ^(2/( (√x))) (√(1+u^2 ))du  changement u=shz  give f(x) =x ∫_0 ^(argsh((2/( (√x))))) ch(z)ch(z)ez =(x/2) ∫_0 ^(argsh((2/( (√)x)))) (ch(2z)+1)dz  =(x/4)[sh(2z)]_0 ^(ln((2/( (√x)))+(√(1+(4/x)))))  +(x/2)ln((2/( (√x)))+(√(1+(4/x))))  =(x/8)[e^(2z) −e^(−2z) ]_0 ^(ln(((2+(√(x+4)))/( (√x) ))))  +(x/2)ln(((2+(√(x+4)))/( (√x)))) ⇒  f(x)=(x/8){(((2+(√(x+4)))/( (√x))))^2 −(1/((((2+(√(x+4)))/( (√x))))^2 ))}+(x/2)ln(((2+(√(x+4)))/( (√x))))  2)we have f^′ (x)= ∫_0 ^2 (1/(2(√(x+t^2 )))) dt =(1/2)g(x) ⇒g(x) =2f^′ (x)  rest to calculate f^′ (x) ..be continued...
1)f(x)=02x+t2dtchangementt=xugivef(x)=02xx1+u2xdu=x02x1+u2duchangementu=shzgivef(x)=x0argsh(2x)ch(z)ch(z)ez=x20argsh(2x)(ch(2z)+1)dz=x4[sh(2z)]0ln(2x+1+4x)+x2ln(2x+1+4x)=x8[e2ze2z]0ln(2+x+4x)+x2ln(2+x+4x)f(x)=x8{(2+x+4x)21(2+x+4x)2}+x2ln(2+x+4x)2)wehavef(x)=0212x+t2dt=12g(x)g(x)=2f(x)resttocalculatef(x)..becontinued
Commented by mathmax by abdo last updated on 21/Aug/19
3) we have ∫_0 ^2 (√(4+t^2 ))dt =f(4) =(1/2){(((2+2(√2))/2))^2 −(1/((((2+2(√2))/2))^2 ))  +2ln(((2+2(√2))/2)) =(1/2){ (1+(√2))^2 −(1/((1+(√2))^2 ))} +2ln(1+(√2))  ∫_0 ^2   (dt/( (√(3+t^2 )))) =_(t=(√3)u)     ∫_0 ^(2/( (√3)))     (((√3)du)/( (√3)(√(1+u^2 )))) =∫_0 ^(2/( (√3)))    (du/( (√(1+u^2 ))))  =[ln(u+(√(1+u^2 )))]_0 ^(2/( (√3)))   =ln((2/( (√3))) +(√(1+(4/3)))) =ln(((2+(√7))/( (√3))))
3)wehave024+t2dt=f(4)=12{(2+222)21(2+222)2+2ln(2+222)=12{(1+2)21(1+2)2}+2ln(1+2)02dt3+t2=t=3u0233du31+u2=023du1+u2=[ln(u+1+u2)]023=ln(23+1+43)=ln(2+73)
Commented by mathmax by abdo last updated on 21/Aug/19
4) we have g(x) =∫_0 ^2 (x+t^2 )^(−(1/2))  dt ⇒g^′ (x) =∫_0 ^2 −(1/2)(x+t^2 )^(−(3/2)) dt  =−(1/2) ∫_0 ^2  (dt/((x+t^2 )(√(x+t^2 )))) .
4)wehaveg(x)=02(x+t2)12dtg(x)=0212(x+t2)32dt=1202dt(x+t2)x+t2.

Leave a Reply

Your email address will not be published. Required fields are marked *