Menu Close

let-f-x-0-dt-x-2-t-2-2-with-x-gt-0-1-find-a-explicit-form-of-x-2-find-also-g-x-0-dt-x-2-t-2-3-3-find-the-values-of-integrals-0-dt-t-2-3-2-




Question Number 67008 by mathmax by abdo last updated on 21/Aug/19
let f(x) =∫_0 ^∞     (dt/((x^2  +t^2 )^2 ))  with x>0  1) find a explicit form of (x)  2)find also g(x) =∫_0 ^∞    (dt/((x^2  +t^2 )^3 ))  3)find the values of integrals ∫_0 ^∞    (dt/((t^2  +3)^2 )) and ∫_0 ^∞   (dt/((t^2  +3)^3 ))  4) calculate U_θ =∫_0 ^∞    (dt/((t^2  +cos^2 θ)^2 ))   with 0<θ<(π/2)  5) find f^((n)) (x) and f^((n)) (0)  6) developp f at integr serie
letf(x)=0dt(x2+t2)2withx>01)findaexplicitformof(x)2)findalsog(x)=0dt(x2+t2)33)findthevaluesofintegrals0dt(t2+3)2and0dt(t2+3)34)calculateUθ=0dt(t2+cos2θ)2with0<θ<π25)findf(n)(x)andf(n)(0)6)developpfatintegrserie
Commented by mathmax by abdo last updated on 25/Aug/19
1) f(x) =∫_0 ^∞    (dt/((x^2  +t^2 )^2 )) ⇒2f(x) =∫_(−∞) ^(+∞)  (dt/((t^2  +x^2 )^2 ))  let  =_(t=xz)    ∫_(−∞) ^(+∞)      ((xdz)/(x^4 (z^2  +1)^2 )) =(1/x^3 ) ∫_(−∞) ^(+∞)   (dz/((z^2  +1)^2 ))  let ϕ(z)=(1/((z^2  +1)^2 ))  we have ϕ(z) =(1/((z−i)^2 (z+i)^2 ))  resi_ dus tbeorem hive  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i)  Res(ϕ,i) =lim_(z→i) {(z−i)^2 ϕ(z)}^((1))  =lim_(z→i)   {(z+i)^(−2) }^((1))   =lim_(z→i)   −2(z+i)^(−3)  =−2(2i)^(−3)  =((−2)/((2i)^3 )) =((−2)/(−8i)) =(1/(4i)) ⇒  ∫_(−∞) ^(+∞ ) ϕ(z)dz =2iπ×(1/(4i)) =(π/2) ⇒2f(x)=(π/(2x^3 )) ⇒f(x) =(π/(4x^3 ))     (x>0)  2) we have f^′ (x) =−∫_0 ^∞    ((2(2x)(x^(2 ) +t^2 ))/((x^2  +t^2 )^4 ))dx =−4x ∫_0 ^∞    (dx/((x^2  +t^2 )^3 ))  =−4x g(x) ⇒g(x) =−(1/(4x))f^′ (x)  f^′ (x) =(π/4)(x^(−3) )^′  =(π/4)(−3)x^(−4)  =((−3π)/(4x^4 )) ⇒  g(x) =−(1/(4x))×((−3π)/(4x^4 )) =((3π)/(16x^5 ))
1)f(x)=0dt(x2+t2)22f(x)=+dt(t2+x2)2let=t=xz+xdzx4(z2+1)2=1x3+dz(z2+1)2letφ(z)=1(z2+1)2wehaveφ(z)=1(zi)2(z+i)2residustbeoremhive+φ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi{(zi)2φ(z)}(1)=limzi{(z+i)2}(1)=limzi2(z+i)3=2(2i)3=2(2i)3=28i=14i+φ(z)dz=2iπ×14i=π22f(x)=π2x3f(x)=π4x3(x>0)2)wehavef(x)=02(2x)(x2+t2)(x2+t2)4dx=4x0dx(x2+t2)3=4xg(x)g(x)=14xf(x)f(x)=π4(x3)=π4(3)x4=3π4x4g(x)=14x×3π4x4=3π16x5
Commented by mathmax by abdo last updated on 25/Aug/19
3) ∫_0 ^∞    (dt/((t^2  +3)^2 )) =f((√3)) =(π/(4((√3))^3 )) =(π/(12(√3))) =((π(√3))/(36))  ∫_0 ^∞     (dt/((t^2  +3)^3 )) =g((√3)) =((3π)/(16((√3))^5 )) =((3π)/(16×9×(√3))) =(π/(48(√3))) =((π(√3))/(144))
3)0dt(t2+3)2=f(3)=π4(3)3=π123=π3360dt(t2+3)3=g(3)=3π16(3)5=3π16×9×3=π483=π3144

Leave a Reply

Your email address will not be published. Required fields are marked *