let-f-x-0-dt-x-2-t-2-2-with-x-gt-0-1-find-a-explicit-form-of-x-2-find-also-g-x-0-dt-x-2-t-2-3-3-find-the-values-of-integrals-0-dt-t-2-3-2- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 67008 by mathmax by abdo last updated on 21/Aug/19 letf(x)=∫0∞dt(x2+t2)2withx>01)findaexplicitformof(x)2)findalsog(x)=∫0∞dt(x2+t2)33)findthevaluesofintegrals∫0∞dt(t2+3)2and∫0∞dt(t2+3)34)calculateUθ=∫0∞dt(t2+cos2θ)2with0<θ<π25)findf(n)(x)andf(n)(0)6)developpfatintegrserie Commented by mathmax by abdo last updated on 25/Aug/19 1)f(x)=∫0∞dt(x2+t2)2⇒2f(x)=∫−∞+∞dt(t2+x2)2let=t=xz∫−∞+∞xdzx4(z2+1)2=1x3∫−∞+∞dz(z2+1)2letφ(z)=1(z2+1)2wehaveφ(z)=1(z−i)2(z+i)2residustbeoremhive∫−∞+∞φ(z)dz=2iπRes(φ,i)Res(φ,i)=limz→i{(z−i)2φ(z)}(1)=limz→i{(z+i)−2}(1)=limz→i−2(z+i)−3=−2(2i)−3=−2(2i)3=−2−8i=14i⇒∫−∞+∞φ(z)dz=2iπ×14i=π2⇒2f(x)=π2x3⇒f(x)=π4x3(x>0)2)wehavef′(x)=−∫0∞2(2x)(x2+t2)(x2+t2)4dx=−4x∫0∞dx(x2+t2)3=−4xg(x)⇒g(x)=−14xf′(x)f′(x)=π4(x−3)′=π4(−3)x−4=−3π4x4⇒g(x)=−14x×−3π4x4=3π16x5 Commented by mathmax by abdo last updated on 25/Aug/19 3)∫0∞dt(t2+3)2=f(3)=π4(3)3=π123=π336∫0∞dt(t2+3)3=g(3)=3π16(3)5=3π16×9×3=π483=π3144 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-f-0-1-R-such-that-a-0-1-fdt-0-1-1-df-dt-2-dt-b-x-0-1-0-x-fdt-0-x-1-df-dt-2-dt-Next Next post: calculate-n-4-n-n-2-9-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.