let-f-x-0-pi-4-dt-x-tant-with-x-real-1-find-aexplicit-form-of-f-x-2-find-also-g-x-0-pi-4-dt-x-tant-2-3-give-f-n-x-at-form-of-integral-4-calculate-0-pi-4-dt-2 Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 66060 by mathmax by abdo last updated on 08/Aug/19 letf(x)=∫0π4dtx+tantwithxreal1)findaexplicitformoff(x)2)findalsog(x)=∫0π4dt(x+tant)23)givef(n)(x)atformofintegral4)calculate∫0π4dt2+tantand∫0π4dt(2+tant)2 Commented by mathmax by abdo last updated on 10/Aug/19 1)wehavef(x)=∫0π4dtx+tantchangementtan(t2)=ugivef(x)=∫02−11x+2u1−u22du1+u2=2∫02−11−u2(1+u2)(x−xu2+2u)du=2∫02−1u2−1(u2+1)(xu2−2u−x)duletdecomposeF(u)=u2−1(u2+1)(xu2−2u−x)xu2−2u−x=0→Δ′=1+x2⇒u1=1+1+x2xandu2=1−1+x2x(wesupposex≠0)⇒F(u)=u2−1x(u−u1)(x−u2)(u2+1)=au−u1+bu−u2+cu+du2+1a=limu→u1(u−u1)F(u)=u12−1x(21+x2x)(u12+1)=u12−121+x2(u12+1)b=limu→u2(u−u2)F(u)=u22−1x(−21+x2x)(u22+1)=u22−1−21+x2(u22+1)limu→+∞uF(u)=0=a+b+c⇒c=−(a+b)F(0)=1x=−au1−bu2+d⇒d=1x+au1+bu2⇒∫02−1F(u)du=[aln∣u−u1∣+bln∣u−u2∣]12−1+[c2ln(u2+1)+darctan(u)]02−1=aln∣2−1−u11−u1∣+bln∣2−1−u21−u2∣+c2ln(3−22+1)+darctan(2−1)}⇒f(x)=2aln∣2−1−u11−u1∣+2bln∣2−1−u21−u2∣+cln(4−22)+dπ4a=(1+1+x2x)2−121+x2((1+1+x2x)2+1)=(1+1+x2)2−x221+x2((1+1+x2)2+x2)=1+21+x2+1+x2−x221+x2(1+21+x2+1+x2+x2)=(1+1+x2)1+x2(2+21+x2+2x2)=1+1+x221+x2(x2+21+x2+1)resttosimplifyothercoefficie7ts… Commented by mathmax by abdo last updated on 10/Aug/19 2)wehavef′(x)=−∫0π4dt(x+tant)2=−g(x)⇒g(x)=−f′(x)resttocalculatef′(x)3)wehavef(x)=∫0π4dt(x+tant)⇒f(n)(x)=∫0π4(−1)nn!(x+tant)n+1dt Commented by mathmax by abdo last updated on 10/Aug/19 4)changementtan(t2)=ugive∫0π4dt(2+tant)=∫02−112+2u1−u22du1+u2=2∫02−11−u2(1+u2)(2−2u2+2u)=2∫02−1u2−1(u2+1)(2u2−2u−2)=∫02−1u2−1(u2−u−1)(u2+1)duletdecomposeF(u)=u2−1(u2−u−1)(u2+1)u2−u−1=0→Δ=1+4=5⇒u1=1+52andu2=1−52F(u)=u2−1(u−u1)(u−u2)(u2+1)=au−u1+bu−u2+cu+du2+1a=u12−15(u12+1)=(1+5)24−15((1+5)24+1)=6+25−45(6+25+4)=2+255(10+25)=1+55(5+5)=1+555+5=15b=u22−1−5(u22+1)=(1−5)24−1(−5)((1−5)24+1)=6−25−4(−5)(6−25+4)=2−25(−5)(10−25)=1−5(−5)(5−5)=5−155−5=15limu→+∞uF(u)=0=a+b+c⇒c=−25F(0)=1=−au1−bu2+d⇒d=1+15u1+15u2=1+15{u1+u2u1u2}=1+151−1=1−15=45⇒F(u)=15(u−u1)+15(u−u2)+−25u+45u2+1⇒∫F(u)du=15ln∣u−u1∣+15ln∣u−u2∣−15ln(u2+1)+45arctanu+c⇒∫02−1F(u)du=[15ln∣u−u1∣+15ln∣u−u2∣−15ln(u2+1)+45arctan(u)]02−1…resttofinishthecalculus… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-f-t-0-1-sinx-1-te-x-2-dx-with-t-lt-1-developp-f-at-integr-serie-Next Next post: let-x-2-x-lnx-0-by-using-newton-method-find-a-approximate-value-of-the-roots-of-this-equation- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.