Menu Close

let-f-x-0-pi-4-dt-x-tant-with-x-real-1-find-aexplicit-form-of-f-x-2-find-also-g-x-0-pi-4-dt-x-tant-2-3-give-f-n-x-at-form-of-integral-4-calculate-0-pi-4-dt-2




Question Number 66060 by mathmax by abdo last updated on 08/Aug/19
let f(x) =∫_0 ^(π/4)   (dt/(x+tant))  with x real  1) find aexplicit form of f(x)  2)find also g(x) =∫_0 ^(π/4)   (dt/((x+tant)^2 ))  3)give f^((n)) (x)at form of integral  4)calculate ∫_0 ^(π/4)   (dt/(2+tant))  and ∫_0 ^(π/4)   (dt/((2+tant)^2 ))
letf(x)=0π4dtx+tantwithxreal1)findaexplicitformoff(x)2)findalsog(x)=0π4dt(x+tant)23)givef(n)(x)atformofintegral4)calculate0π4dt2+tantand0π4dt(2+tant)2
Commented by mathmax by abdo last updated on 10/Aug/19
1) we have f(x)=∫_0 ^(π/4)  (dt/(x+tant))  changement tan((t/2))=u give  f(x)=∫_0 ^((√2)−1)     (1/(x+((2u)/(1−u^2 )))) ((2du)/(1+u^2 )) =2∫_0 ^((√2)−1)  ((1−u^2 )/((1+u^2 )(x−xu^2  +2u)))du  =2 ∫_0 ^((√2)−1)   ((u^2 −1)/((u^2  +1)(xu^2 −2u−x)))du let decompose  F(u) =((u^2 −1)/((u^2  +1)(xu^2 −2u−x)))  xu^2 −2u−x=0 →Δ^′  =1+x^2  ⇒u_1 =((1+(√(1+x^2 )))/x)  and u_2 =((1−(√(1+x^2 )))/x)  ( we suppose x≠0) ⇒F(u) =((u^2 −1)/(x(u−u_1 )(x−u_2 )(u^2  +1)))  =(a/(u−u_1 )) +(b/(u−u_2 )) +((cu +d)/(u^2  +1))  a =lim_(u→u_1 ) (u−u_1 )F(u) =((u_1 ^2 −1)/(x(2((√(1+x^2 ))/x))(u_1 ^2  +1))) =((u_1 ^2 −1)/(2(√(1+x^2 ))(u_1 ^2  +1)))  b =lim_(u→u_2 ) (u−u_2 )F(u) =((u_2 ^2 −1)/(x(−2((√(1+x^2 ))/x))(u_2 ^2  +1))) =((u_2 ^2 −1)/(−2(√(1+x^2 ))(u_2 ^2  +1)))  lim_(u→+∞) uF(u) =0 =a+b +c ⇒c =−(a+b)  F(0)=(1/x) =−(a/u_1 )−(b/u_2 ) +d ⇒d =(1/x)+(a/u_1 ) +(b/u_2 ) ⇒  ∫_0 ^((√2)−1)  F(u)du =[aln∣u−u_1 ∣+bln∣u−u_2 ∣]_1 ^((√2)−1)  +[(c/2)ln(u^2  +1)+darctan(u)]_0 ^((√2)−1)   =aln∣(((√2)−1−u_1 )/(1−u_1 ))∣+bln∣(((√2)−1−u_2 )/(1−u_2 ))∣+(c/2)ln(3−2(√2)+1)+d arctan((√2)−1)}  ⇒f(x)=2aln∣(((√2)−1−u_1 )/(1−u_1 ))∣+2bln∣(((√2)−1−u_2 )/(1−u_2 ))∣+cln(4−2(√2))+(dπ/4)  a =(((((1+(√(1+x^2 )))/x))^2 −1)/(2(√(1+x^2 ))((((1+(√(1+x^2 )))/x))^2 +1))) =(((1+(√(1+x^2 )))^2 −x^2 )/(2(√(1+x^2 ))((1+(√(1+x^2 )))^2  +x^2 )))  =((1+2(√(1+x^2 ))+1+x^2 −x^2 )/(2(√(1+x^2 ))(1+2(√(1+x^2 ))+1+x^2  +x^2 ))) =(((1+(√(1+x^2 ))))/( (√(1+x^2 ))(2+2(√(1+x^2 ))+2x^2 )))  =((1+(√(1+x^2 )))/(2(√(1+x^2 ))(x^2 +2(√(1+x^2 ))+1)))  rest to simplify other coefficie7ts...
1)wehavef(x)=0π4dtx+tantchangementtan(t2)=ugivef(x)=0211x+2u1u22du1+u2=20211u2(1+u2)(xxu2+2u)du=2021u21(u2+1)(xu22ux)duletdecomposeF(u)=u21(u2+1)(xu22ux)xu22ux=0Δ=1+x2u1=1+1+x2xandu2=11+x2x(wesupposex0)F(u)=u21x(uu1)(xu2)(u2+1)=auu1+buu2+cu+du2+1a=limuu1(uu1)F(u)=u121x(21+x2x)(u12+1)=u12121+x2(u12+1)b=limuu2(uu2)F(u)=u221x(21+x2x)(u22+1)=u22121+x2(u22+1)limu+uF(u)=0=a+b+cc=(a+b)F(0)=1x=au1bu2+dd=1x+au1+bu2021F(u)du=[alnuu1+blnuu2]121+[c2ln(u2+1)+darctan(u)]021=aln21u11u1+bln21u21u2+c2ln(322+1)+darctan(21)}f(x)=2aln21u11u1+2bln21u21u2+cln(422)+dπ4a=(1+1+x2x)2121+x2((1+1+x2x)2+1)=(1+1+x2)2x221+x2((1+1+x2)2+x2)=1+21+x2+1+x2x221+x2(1+21+x2+1+x2+x2)=(1+1+x2)1+x2(2+21+x2+2x2)=1+1+x221+x2(x2+21+x2+1)resttosimplifyothercoefficie7ts
Commented by mathmax by abdo last updated on 10/Aug/19
2)we have f^′ (x)=−∫_0 ^(π/4)   (dt/((x+tant)^2 )) =−g(x) ⇒g(x)=−f^′ (x)  rest to calculate f^′ (x)  3)we have f(x)=∫_0 ^(π/4)   (dt/((x+tant))) ⇒f^((n)) (x)=∫_0 ^(π/4) (((−1)^n n!)/((x+tant)^(n+1) ))dt
2)wehavef(x)=0π4dt(x+tant)2=g(x)g(x)=f(x)resttocalculatef(x)3)wehavef(x)=0π4dt(x+tant)f(n)(x)=0π4(1)nn!(x+tant)n+1dt
Commented by mathmax by abdo last updated on 10/Aug/19
4) changement tan((t/2))=u give   ∫_0 ^(π/4)   (dt/((2+tant))) =∫_0 ^((√2)−1)   (1/(2+((2u)/(1−u^2 ))))((2du)/(1+u^2 )) =2 ∫_0 ^((√2)−1)   ((1−u^2 )/((1+u^2 )(2−2u^2  +2u)))  =2 ∫_0 ^((√2)−1)    ((u^2 −1)/((u^2  +1)(2u^2 −2u−2))) =∫_0 ^((√2)−1)   ((u^2 −1)/((u^2 −u−1)(u^2  +1)))du  let decompose F(u) =((u^2 −1)/((u^2 −u−1)(u^2  +1)))  u^2 −u−1=0→Δ =1+4 =5 ⇒u_1 =((1+(√5))/2)  and u_2 =((1−(√5))/2)  F(u)=((u^2 −1)/((u−u_1 )(u−u_2 )(u^2  +1))) =(a/(u−u_1 )) +(b/(u−u_2 )) +((cu +d)/(u^2  +1))  a =((u_1 ^2 −1)/( (√5)(u_1 ^2  +1))) =(((((1+(√5))^2 )/4)−1)/( (√5)( (((1+(√5))^2 )/4)+1))) =((6+2(√5)−4)/( (√5)(6+2(√5)+4))) =((2+2(√5))/( (√5)(10+2(√5))))  =((1+(√5))/( (√5)(5+(√5)))) =((1+(√5))/(5(√5)+5)) =(1/5)  b =((u_2 ^2 −1)/(−(√5)(u_2 ^2  +1))) =(((((1−(√5))^2 )/4)−1)/((−(√5))((((1−(√5))^2 )/4)+1))) =((6−2(√5)−4)/((−(√5))(6−2(√5)+4)))  =((2−2(√5))/((−(√5))(10−2(√5)))) =((1−(√5))/((−(√5))(5−(√5)))) =(((√5)−1)/(5(√5)−5)) =(1/5)  lim_(u→+∞) uF(u)=0 =a+b+c ⇒c =−(2/5)  F(0) =1 =−(a/u_1 )−(b/u_2 ) +d ⇒d =1+(1/(5u_1 )) +(1/(5u_2 ))  =1+(1/5){((u_1 +u_2 )/(u_1 u_2 ))} =1+(1/5) (1/(−1)) =1−(1/5) =(4/5) ⇒  F(u)= (1/(5(u−u_1 ))) +(1/(5(u−u_2 ))) +((((−2)/5)u +(4/5))/(u^2  +1)) ⇒  ∫ F(u)du =(1/5)ln∣u−u_1 ∣+(1/5)ln∣u−u_2 ∣−(1/5)ln(u^2  +1)+(4/5) arctanu +c  ⇒ ∫_0 ^((√2)−1)  F(u)du=  [(1/5)ln∣u−u_1 ∣+(1/5)ln∣u−u_2 ∣−(1/5)ln(u^2  +1)+(4/5)arctan(u)]_0 ^((√2)−1)   ...rest to finish the calculus...
4)changementtan(t2)=ugive0π4dt(2+tant)=02112+2u1u22du1+u2=20211u2(1+u2)(22u2+2u)=2021u21(u2+1)(2u22u2)=021u21(u2u1)(u2+1)duletdecomposeF(u)=u21(u2u1)(u2+1)u2u1=0Δ=1+4=5u1=1+52andu2=152F(u)=u21(uu1)(uu2)(u2+1)=auu1+buu2+cu+du2+1a=u1215(u12+1)=(1+5)2415((1+5)24+1)=6+2545(6+25+4)=2+255(10+25)=1+55(5+5)=1+555+5=15b=u2215(u22+1)=(15)241(5)((15)24+1)=6254(5)(625+4)=225(5)(1025)=15(5)(55)=51555=15limu+uF(u)=0=a+b+cc=25F(0)=1=au1bu2+dd=1+15u1+15u2=1+15{u1+u2u1u2}=1+1511=115=45F(u)=15(uu1)+15(uu2)+25u+45u2+1F(u)du=15lnuu1+15lnuu215ln(u2+1)+45arctanu+c021F(u)du=[15lnuu1+15lnuu215ln(u2+1)+45arctan(u)]021resttofinishthecalculus

Leave a Reply

Your email address will not be published. Required fields are marked *