Menu Close

let-f-x-0-sin-t-2-x-2-t-2-2-dt-with-x-gt-0-1-determine-a-explicit-form-for-f-x-2-find-also-g-x-0-sin-t-2-x-2-t-2-3-dt-3-give-f-n-x-at-form-of-int




Question Number 67744 by mathmax by abdo last updated on 31/Aug/19
let f(x) =∫_0 ^∞   ((sin(t^2 ))/((x^2  +t^2 )^2 ))dt  with x>0  1)determine a explicit form for f(x)  2) find  also g(x) =∫_0 ^∞   ((sin(t^2 ))/((x^2  +t^2 )^3 ))dt  3) give f^((n)) (x) at form of integral and calculate f^((n)) (1).  4) find the valueof ∫_0 ^∞   ((sin(t^2 ))/((1+t^2 )^2 )) dt and ∫_0 ^∞   ((sin(t^2 ))/((1+t^2 )^3 ))dt
letf(x)=0sin(t2)(x2+t2)2dtwithx>01)determineaexplicitformforf(x)2)findalsog(x)=0sin(t2)(x2+t2)3dt3)givef(n)(x)atformofintegralandcalculatef(n)(1).4)findthevalueof0sin(t2)(1+t2)2dtand0sin(t2)(1+t2)3dt
Commented by mathmax by abdo last updated on 31/Aug/19
1) we have f(x)=∫_0 ^∞   ((sin(t^2 ))/((x^2 +t^2 )^2 ))dt cha7gement  t=xu give  f(x) =∫_0 ^∞   ((sin(x^2 u^2 ))/(x^4 (1+u^2 )^2 )) xdu =(1/x^3 ) ∫_0 ^∞    ((sin(x^2 u^2 ))/((u^2 +1)^2 ))du  =(1/(2x^3 ))∫_(−∞) ^(+∞)  ((sin(x^2 u^2 ))/((u^2  +1)^2 ))du  =(1/(2x^3 )) Im(∫_(−∞) ^(+∞)  (e^(ix^2 u^2 ) /((u^2  +1)^2 ))du)let  W(z)=(e^(ix^2 z^2 ) /((z^2  +1)^2 )) ⇒W(z) =(e^(ix^2 z^2 ) /((z−i)^2 (z+i)^2 ))  so the poles of W are i  and −i(doubles) residus theorem give  ∫_(−∞) ^(+∞)  W(z)dz =2iπ Res(W,i) and  Res(W,i) =lim_(z→i)  (1/((2−1)!)){(z−i)^2 W(z)}^((1))   =lim_(z→i)    { (e^(ix^2 z^2 ) /((z+i)^2 ))}^((1))  =lim_(z→i)   ((2ix^2 z e^(ix^2 z^2 ) (z+i)^2 −2(z+i)e^(ix^2 z^2 ) )/((z+i)^4 ))  =lim_(z→i)   ((2ix^2 z e^(ix^2 z^2 ) (z+i)−2 e^(ix^2 z^2 ) )/((z+i)^3 ))  =lim_(z→i)  ((2ix^2 z(z+i)−2)/((z+i)^3 )) e^(ix^2 z^2 )  =((((2i)(−2x^2 )−2)e^(−ix^2 ) )/((2i)^3 ))  =(((−4ix^2 −2) e^(−ix^2 ) )/(−8i)) =(((2ix^2 −1)e^(−ix^2 ) )/(4i)) ⇒  ∫_(−∞) ^(+∞)  W(z)dz =2iπ×(((2ix^2 −1)e^(−ix^2 ) )/(4i)) =(π/2)(2ix^2 −1)e^(−ix^2 )   =(π/2)(2ix^2 −1)(cos(x^2 )−isin(x^2 ))  =(π/2){2ix^2 cos(x^2 ) +2x^2 sin(x^2 )−cos(x^2 )+isin(x^2 )}  =(π/2){2x^2 sin(x^2 )−cos(x^2 ) +i(2x^2 cos(x^2 )+sin(x^2 )} ⇒  f(x)=((2x^2 cos(x^2 )+sin(x^2 ))/(2x^3 )) .
1)wehavef(x)=0sin(t2)(x2+t2)2dtcha7gementt=xugivef(x)=0sin(x2u2)x4(1+u2)2xdu=1x30sin(x2u2)(u2+1)2du=12x3+sin(x2u2)(u2+1)2du=12x3Im(+eix2u2(u2+1)2du)letW(z)=eix2z2(z2+1)2W(z)=eix2z2(zi)2(z+i)2sothepolesofWareiandi(doubles)residustheoremgive+W(z)dz=2iπRes(W,i)andRes(W,i)=limzi1(21)!{(zi)2W(z)}(1)=limzi{eix2z2(z+i)2}(1)=limzi2ix2zeix2z2(z+i)22(z+i)eix2z2(z+i)4=limzi2ix2zeix2z2(z+i)2eix2z2(z+i)3=limzi2ix2z(z+i)2(z+i)3eix2z2=((2i)(2x2)2)eix2(2i)3=(4ix22)eix28i=(2ix21)eix24i+W(z)dz=2iπ×(2ix21)eix24i=π2(2ix21)eix2=π2(2ix21)(cos(x2)isin(x2))=π2{2ix2cos(x2)+2x2sin(x2)cos(x2)+isin(x2)}=π2{2x2sin(x2)cos(x2)+i(2x2cos(x2)+sin(x2)}f(x)=2x2cos(x2)+sin(x2)2x3.
Commented by mathmax by abdo last updated on 31/Aug/19
sorry f(x) =(π/(4x^3 )){2x^2 cos(x^2 )+sin(x^2 )}
sorryf(x)=π4x3{2x2cos(x2)+sin(x2)}
Commented by mathmax by abdo last updated on 31/Aug/19
2) we have f^′ (x) =−∫_0 ^∞  ((−2(2x)(x^2 +t^2 ))/((x^2  +t^2 )^4 ))sin(t^2 )dt =4x∫_0 ^∞  ((sin(t^2 ))/((x^2  +t^2 )^3 ))  =4x g(x) ⇒g(x) =(1/(4x))f^′ (x)  we have   f(x)=(π/(4x^3 )){2x^2 cos(x^2 )+sin(x^2 )} ⇒  f^′ (x) =(π/4)(((−3x^2 )/x^6 )){2x^2 cos(x^2 )+sin(x^2 )}  +(π/(4x^3 )){ 4xcos(x^2 )−4x^3 sin(x^2 )+2xcos(x^2 )}=...
2)wehavef(x)=02(2x)(x2+t2)(x2+t2)4sin(t2)dt=4x0sin(t2)(x2+t2)3=4xg(x)g(x)=14xf(x)wehavef(x)=π4x3{2x2cos(x2)+sin(x2)}f(x)=π4(3x2x6){2x2cos(x2)+sin(x2)}+π4x3{4xcos(x2)4x3sin(x2)+2xcos(x2)}=
Commented by mathmax by abdo last updated on 31/Aug/19
4) ∫_0 ^∞  ((sin(t^2 ))/((1+t^2 )^2 ))dt =f(1)=(π/4){2cos(1) +sin(1)}  =(π/2)cos(1)+(π/4)sin(1).  ∫_0 ^∞   ((sin(t^2 ))/((1+t^2 )^3 ))dt =g(1) rest to calculste g(1)...
4)0sin(t2)(1+t2)2dt=f(1)=π4{2cos(1)+sin(1)}=π2cos(1)+π4sin(1).0sin(t2)(1+t2)3dt=g(1)resttocalculsteg(1)

Leave a Reply

Your email address will not be published. Required fields are marked *