Question Number 67744 by mathmax by abdo last updated on 31/Aug/19
$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left({t}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt}\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right){determine}\:{a}\:{explicit}\:{form}\:{for}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:{also}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left({t}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} \right)^{\mathrm{3}} }{dt} \\ $$$$\left.\mathrm{3}\right)\:{give}\:{f}^{\left({n}\right)} \left({x}\right)\:{at}\:{form}\:{of}\:{integral}\:{and}\:{calculate}\:{f}^{\left({n}\right)} \left(\mathrm{1}\right). \\ $$$$\left.\mathrm{4}\right)\:{find}\:{the}\:{valueof}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left({t}^{\mathrm{2}} \right)}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dt}\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left({t}^{\mathrm{2}} \right)}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{3}} }{dt} \\ $$
Commented by mathmax by abdo last updated on 31/Aug/19
$$\left.\mathrm{1}\right)\:{we}\:{have}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left({t}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} +{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt}\:{cha}\mathrm{7}{gement}\:\:{t}={xu}\:{give} \\ $$$${f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left({x}^{\mathrm{2}} {u}^{\mathrm{2}} \right)}{{x}^{\mathrm{4}} \left(\mathrm{1}+{u}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{xdu}\:=\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{sin}\left({x}^{\mathrm{2}} {u}^{\mathrm{2}} \right)}{\left({u}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{3}} }\int_{−\infty} ^{+\infty} \:\frac{{sin}\left({x}^{\mathrm{2}} {u}^{\mathrm{2}} \right)}{\left({u}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }{du}\:\:=\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{3}} }\:{Im}\left(\int_{−\infty} ^{+\infty} \:\frac{{e}^{{ix}^{\mathrm{2}} {u}^{\mathrm{2}} } }{\left({u}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }{du}\right){let} \\ $$$${W}\left({z}\right)=\frac{{e}^{{ix}^{\mathrm{2}} {z}^{\mathrm{2}} } }{\left({z}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow{W}\left({z}\right)\:=\frac{{e}^{{ix}^{\mathrm{2}} {z}^{\mathrm{2}} } }{\left({z}−{i}\right)^{\mathrm{2}} \left({z}+{i}\right)^{\mathrm{2}} }\:\:{so}\:{the}\:{poles}\:{of}\:{W}\:{are}\:{i} \\ $$$${and}\:−{i}\left({doubles}\right)\:{residus}\:{theorem}\:{give} \\ $$$$\int_{−\infty} ^{+\infty} \:{W}\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left({W},{i}\right)\:{and} \\ $$$${Res}\left({W},{i}\right)\:={lim}_{{z}\rightarrow{i}} \:\frac{\mathrm{1}}{\left(\mathrm{2}−\mathrm{1}\right)!}\left\{\left({z}−{i}\right)^{\mathrm{2}} {W}\left({z}\right)\right\}^{\left(\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow{i}} \:\:\:\left\{\:\frac{{e}^{{ix}^{\mathrm{2}} {z}^{\mathrm{2}} } }{\left({z}+{i}\right)^{\mathrm{2}} }\right\}^{\left(\mathrm{1}\right)} \:={lim}_{{z}\rightarrow{i}} \:\:\frac{\mathrm{2}{ix}^{\mathrm{2}} {z}\:{e}^{{ix}^{\mathrm{2}} {z}^{\mathrm{2}} } \left({z}+{i}\right)^{\mathrm{2}} −\mathrm{2}\left({z}+{i}\right){e}^{{ix}^{\mathrm{2}} {z}^{\mathrm{2}} } }{\left({z}+{i}\right)^{\mathrm{4}} } \\ $$$$={lim}_{{z}\rightarrow{i}} \:\:\frac{\mathrm{2}{ix}^{\mathrm{2}} {z}\:{e}^{{ix}^{\mathrm{2}} {z}^{\mathrm{2}} } \left({z}+{i}\right)−\mathrm{2}\:{e}^{{ix}^{\mathrm{2}} {z}^{\mathrm{2}} } }{\left({z}+{i}\right)^{\mathrm{3}} } \\ $$$$={lim}_{{z}\rightarrow{i}} \:\frac{\mathrm{2}{ix}^{\mathrm{2}} {z}\left({z}+{i}\right)−\mathrm{2}}{\left({z}+{i}\right)^{\mathrm{3}} }\:{e}^{{ix}^{\mathrm{2}} {z}^{\mathrm{2}} } \:=\frac{\left(\left(\mathrm{2}{i}\right)\left(−\mathrm{2}{x}^{\mathrm{2}} \right)−\mathrm{2}\right){e}^{−{ix}^{\mathrm{2}} } }{\left(\mathrm{2}{i}\right)^{\mathrm{3}} } \\ $$$$=\frac{\left(−\mathrm{4}{ix}^{\mathrm{2}} −\mathrm{2}\right)\:{e}^{−{ix}^{\mathrm{2}} } }{−\mathrm{8}{i}}\:=\frac{\left(\mathrm{2}{ix}^{\mathrm{2}} −\mathrm{1}\right){e}^{−{ix}^{\mathrm{2}} } }{\mathrm{4}{i}}\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:{W}\left({z}\right){dz}\:=\mathrm{2}{i}\pi×\frac{\left(\mathrm{2}{ix}^{\mathrm{2}} −\mathrm{1}\right){e}^{−{ix}^{\mathrm{2}} } }{\mathrm{4}{i}}\:=\frac{\pi}{\mathrm{2}}\left(\mathrm{2}{ix}^{\mathrm{2}} −\mathrm{1}\right){e}^{−{ix}^{\mathrm{2}} } \\ $$$$=\frac{\pi}{\mathrm{2}}\left(\mathrm{2}{ix}^{\mathrm{2}} −\mathrm{1}\right)\left({cos}\left({x}^{\mathrm{2}} \right)−{isin}\left({x}^{\mathrm{2}} \right)\right) \\ $$$$=\frac{\pi}{\mathrm{2}}\left\{\mathrm{2}{ix}^{\mathrm{2}} {cos}\left({x}^{\mathrm{2}} \right)\:+\mathrm{2}{x}^{\mathrm{2}} {sin}\left({x}^{\mathrm{2}} \right)−{cos}\left({x}^{\mathrm{2}} \right)+{isin}\left({x}^{\mathrm{2}} \right)\right\} \\ $$$$=\frac{\pi}{\mathrm{2}}\left\{\mathrm{2}{x}^{\mathrm{2}} {sin}\left({x}^{\mathrm{2}} \right)−{cos}\left({x}^{\mathrm{2}} \right)\:+{i}\left(\mathrm{2}{x}^{\mathrm{2}} {cos}\left({x}^{\mathrm{2}} \right)+{sin}\left({x}^{\mathrm{2}} \right)\right\}\:\Rightarrow\right. \\ $$$${f}\left({x}\right)=\frac{\mathrm{2}{x}^{\mathrm{2}} {cos}\left({x}^{\mathrm{2}} \right)+{sin}\left({x}^{\mathrm{2}} \right)}{\mathrm{2}{x}^{\mathrm{3}} }\:. \\ $$$$ \\ $$
Commented by mathmax by abdo last updated on 31/Aug/19
$${sorry}\:{f}\left({x}\right)\:=\frac{\pi}{\mathrm{4}{x}^{\mathrm{3}} }\left\{\mathrm{2}{x}^{\mathrm{2}} {cos}\left({x}^{\mathrm{2}} \right)+{sin}\left({x}^{\mathrm{2}} \right)\right\} \\ $$
Commented by mathmax by abdo last updated on 31/Aug/19
$$\left.\mathrm{2}\right)\:{we}\:{have}\:{f}^{'} \left({x}\right)\:=−\int_{\mathrm{0}} ^{\infty} \:\frac{−\mathrm{2}\left(\mathrm{2}{x}\right)\left({x}^{\mathrm{2}} +{t}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} \right)^{\mathrm{4}} }{sin}\left({t}^{\mathrm{2}} \right){dt}\:=\mathrm{4}{x}\int_{\mathrm{0}} ^{\infty} \:\frac{{sin}\left({t}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} \right)^{\mathrm{3}} } \\ $$$$=\mathrm{4}{x}\:{g}\left({x}\right)\:\Rightarrow{g}\left({x}\right)\:=\frac{\mathrm{1}}{\mathrm{4}{x}}{f}^{'} \left({x}\right)\:\:{we}\:{have}\: \\ $$$${f}\left({x}\right)=\frac{\pi}{\mathrm{4}{x}^{\mathrm{3}} }\left\{\mathrm{2}{x}^{\mathrm{2}} {cos}\left({x}^{\mathrm{2}} \right)+{sin}\left({x}^{\mathrm{2}} \right)\right\}\:\Rightarrow \\ $$$${f}^{'} \left({x}\right)\:=\frac{\pi}{\mathrm{4}}\left(\frac{−\mathrm{3}{x}^{\mathrm{2}} }{{x}^{\mathrm{6}} }\right)\left\{\mathrm{2}{x}^{\mathrm{2}} {cos}\left({x}^{\mathrm{2}} \right)+{sin}\left({x}^{\mathrm{2}} \right)\right\} \\ $$$$+\frac{\pi}{\mathrm{4}{x}^{\mathrm{3}} }\left\{\:\mathrm{4}{xcos}\left({x}^{\mathrm{2}} \right)−\mathrm{4}{x}^{\mathrm{3}} {sin}\left({x}^{\mathrm{2}} \right)+\mathrm{2}{xcos}\left({x}^{\mathrm{2}} \right)\right\}=… \\ $$
Commented by mathmax by abdo last updated on 31/Aug/19
$$\left.\mathrm{4}\right)\:\int_{\mathrm{0}} ^{\infty} \:\frac{{sin}\left({t}^{\mathrm{2}} \right)}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt}\:={f}\left(\mathrm{1}\right)=\frac{\pi}{\mathrm{4}}\left\{\mathrm{2}{cos}\left(\mathrm{1}\right)\:+{sin}\left(\mathrm{1}\right)\right\} \\ $$$$=\frac{\pi}{\mathrm{2}}{cos}\left(\mathrm{1}\right)+\frac{\pi}{\mathrm{4}}{sin}\left(\mathrm{1}\right). \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left({t}^{\mathrm{2}} \right)}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{3}} }{dt}\:={g}\left(\mathrm{1}\right)\:{rest}\:{to}\:{calculste}\:{g}\left(\mathrm{1}\right)… \\ $$