Menu Close

Let-f-x-0-x-e-t-2-dt-Prove-0-e-x-2-f-x-dx-e-pi-2-1-




Question Number 135820 by Ar Brandon last updated on 16/Mar/21
Let f(x)=∫_0 ^x e^(−t^2 ) dt ,  Prove ∫_0 ^∞ e^(−x^2 +f(x)) dx=e^((√π)/2) −1.
Letf(x)=0xet2dt,Prove0ex2+f(x)dx=eπ21.
Answered by mindispower last updated on 19/Mar/21
∫_0 ^∞ e^(−x^2 +f(x)) dx  f′(x)=e^(−x^2 )   ⇔∫_0 ^∞ f′(x)e^(f(x)) dx=[e^(f(x)) ]_0 ^∞ =e^(∫_0 ^∞ e^(−t^2 ) dt) −1  =e^(√(π/4)) −1=e^((√π)/2) −1
0ex2+f(x)dxf(x)=ex20f(x)ef(x)dx=[ef(x)]0=e0et2dt1=eπ41=eπ21

Leave a Reply

Your email address will not be published. Required fields are marked *