Menu Close

let-f-x-and-g-x-be-twice-differentiable-functions-on-0-2-satisfying-f-x-g-x-f-1-4-g-1-6-f-2-3-and-g-2-9-Then-what-is-f-x-g-x-at-x-4-equal-to-




Question Number 10039 by Gaurav3651 last updated on 21/Jan/17
  let f(x) and g(x) be twice differentiable  functions on [0,2] satisfying  f′′(x)=g′′(x), f′(1)=4, g′(1)=6,  f(2)=3 and g(2)=9. Then what is  f(x)−g(x) at x=4 equal to?
letf(x)andg(x)betwicedifferentiablefunctionson[0,2]satisfyingf(x)=g(x),f(1)=4,g(1)=6,f(2)=3andg(2)=9.Thenwhatisf(x)g(x)atx=4equalto?
Commented by prakash jain last updated on 22/Jan/17
f′′(x)=g′′(x)  ⇒f′(x)=g′(x)+C  f′(1)=4,g′(1)=6  ⇒4=6+C⇒C=−2  f′(x)=g′(x)−2  integrating  f(x)=g(x)−2x+C_1   f(2)=3,g(2)=9  3=9−2∙2+C_1 ⇒C_1 =−2  f(x)=g(x)−2x−2  f(x)−g(x)=−2x−2  f(4)−g(4)=−2∙4−2=−10
f(x)=g(x)f(x)=g(x)+Cf(1)=4,g(1)=64=6+CC=2f(x)=g(x)2integratingf(x)=g(x)2x+C1f(2)=3,g(2)=93=922+C1C1=2f(x)=g(x)2x2f(x)g(x)=2x2f(4)g(4)=242=10
Commented by mrW1 last updated on 22/Jan/17
GREAT
GREAT

Leave a Reply

Your email address will not be published. Required fields are marked *