Menu Close

let-f-x-arctan-1-x-2-x-1-calculate-f-n-x-and-f-n-0-2-developp-f-at-integr-serie-




Question Number 76190 by abdomathmax last updated on 25/Dec/19
let f(x)=((arctan(1+x))/(2+x))  1) calculate f^((n)) (x) and f^((n)) (0)  2) developp f at integr serie.
letf(x)=arctan(1+x)2+x1)calculatef(n)(x)andf(n)(0)2)developpfatintegrserie.
Commented by mathmax by abdo last updated on 29/Dec/19
1) f^((n)) (x)=Σ_(k=0) ^n  C_n ^k  (arctan(1+x))^((k)) ×((1/(x+2)))^((n−k))   we have (arctan(1+x))^((1)) =(1/(1+(1+x)^2 )) =(1/(x^2 +2x+2)) ⇒  (arctan(x+1))^((k)) =((1/(x^2  +2x+2)))^((k−1))   Δ^′ =1−2 =−1 ⇒x_1 =−1+i  and x_2 =−1−i  x_1 =(√2)(−(1/( (√2)))+(i/( (√2)))) =(√2)e^((i3π)/4)   and x_2 =(√2)e^(−i((3π)/4))  ⇒  (1/(x^2  +2x+2)) =(1/((x−(√2)e^((i3π)/4) )(x−(√2)e^(−i((3π)/4)) ))) =(1/( (√2)2isin(((3π)/4))))((1/(x−(√2)e^(−((i3π)/4)) ))−(1/(x−(√2)e^(i((3π)/4)) )))  =(1/(2i(√2)(1/( (√2))))){ (1/(x−(√2)e^(−((i3π)/4)) ))−(1/(x−(√2)e^((i3π)/4) ))} ⇒  (d^k /dx^k )(arctan(x+1)) =(1/(2i)){  (((−1)^(k−1) (k−1)!)/((x−(√2)e^(−((i3π)/4)) )^k ))−(((−1)^(k−1) (k−1)!)/((x−(√2)e^((i3π)/4) )^k ))}  =(((−1)^(k−1) (k−1)!)/(2i)){(((x−(√2)e^((i3π)/4) )^k −(x−(√2)e^(−((i3π)/4)) ))/((x^2  +2x+2)^k ))}  f^((n)) (x) =arctan(x+1)(((−1)^n n!)/((x+2)^(n+1) ))  +(1/(2i))Σ_(k=1) ^n  C_n ^k  (−1)^(k−1) (k−1)!×(((x−(√2)e^((i3π)/4) )^k −(x−(√2)e^(−((i3π)/4)) )^k )/((x^2  +2x+2)^k ))×(((−1)^(n−k) (n−k)!)/((x+2)^(n−k+1) ))  =(−1)^n n! ((arctan(x+1))/((x+2)^(n+1) ))  +(−1)^(n−1) Σ_(k=1) ^n  C_n ^k   (k−1)!((Im{(x−(√2)e^(i((3π)/4)) )^k })/((x^2  +2x+2)^k ))×(((n−k)!)/((x+2)^(n−k+1) ))
1)f(n)(x)=k=0nCnk(arctan(1+x))(k)×(1x+2)(nk)wehave(arctan(1+x))(1)=11+(1+x)2=1x2+2x+2(arctan(x+1))(k)=(1x2+2x+2)(k1)Δ=12=1x1=1+iandx2=1ix1=2(12+i2)=2ei3π4andx2=2ei3π41x2+2x+2=1(x2ei3π4)(x2ei3π4)=122isin(3π4)(1x2ei3π41x2ei3π4)=12i212{1x2ei3π41x2ei3π4}dkdxk(arctan(x+1))=12i{(1)k1(k1)!(x2ei3π4)k(1)k1(k1)!(x2ei3π4)k}=(1)k1(k1)!2i{(x2ei3π4)k(x2ei3π4)(x2+2x+2)k}f(n)(x)=arctan(x+1)(1)nn!(x+2)n+1+12ik=1nCnk(1)k1(k1)!×(x2ei3π4)k(x2ei3π4)k(x2+2x+2)k×(1)nk(nk)!(x+2)nk+1=(1)nn!arctan(x+1)(x+2)n+1+(1)n1k=1nCnk(k1)!Im{(x2ei3π4)k}(x2+2x+2)k×(nk)!(x+2)nk+1
Commented by mathmax by abdo last updated on 29/Dec/19
f^((n)) (0) =(π/4)(((−1)^n n!)/2^(n+1) )  +(−1)^(n−1)  Σ_(k=1) ^n  C_n ^k   (((k−1)!(n−k)!)/(2^k ×2^(n−k+1) ))×Im{(−(√2))^k  e^(i((3kπ)/4)) }  =(π/4)(((−1)^n n!)/2^(n+1) ) +(−1)^(n−1)  Σ_(k=1) ^n  ((n!)/(k!(n−k)!))×(((k−1)!(n−k!)/2^(n+1) )×(−(√2))^k sin(((3kπ)/4))  =(π/4)×(((−1)^n n!)/2^(n+1) ) +(((−1)^(n−1) )/2^(n+1) ) Σ_(k=1) ^n  ((n!)/k)(−(√2))^k  sin(((3kπ)/4))
f(n)(0)=π4(1)nn!2n+1+(1)n1k=1nCnk(k1)!(nk)!2k×2nk+1×Im{(2)kei3kπ4}=π4(1)nn!2n+1+(1)n1k=1nn!k!(nk)!×(k1)!(nk!2n+1×(2)ksin(3kπ4)=π4×(1)nn!2n+1+(1)n12n+1k=1nn!k(2)ksin(3kπ4)

Leave a Reply

Your email address will not be published. Required fields are marked *