let-f-x-arctan-1-x-2-x-1-calculate-f-n-x-and-f-n-0-2-developp-f-at-integr-serie- Tinku Tara June 3, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 76190 by abdomathmax last updated on 25/Dec/19 letf(x)=arctan(1+x)2+x1)calculatef(n)(x)andf(n)(0)2)developpfatintegrserie. Commented by mathmax by abdo last updated on 29/Dec/19 1)f(n)(x)=∑k=0nCnk(arctan(1+x))(k)×(1x+2)(n−k)wehave(arctan(1+x))(1)=11+(1+x)2=1x2+2x+2⇒(arctan(x+1))(k)=(1x2+2x+2)(k−1)Δ′=1−2=−1⇒x1=−1+iandx2=−1−ix1=2(−12+i2)=2ei3π4andx2=2e−i3π4⇒1x2+2x+2=1(x−2ei3π4)(x−2e−i3π4)=122isin(3π4)(1x−2e−i3π4−1x−2ei3π4)=12i212{1x−2e−i3π4−1x−2ei3π4}⇒dkdxk(arctan(x+1))=12i{(−1)k−1(k−1)!(x−2e−i3π4)k−(−1)k−1(k−1)!(x−2ei3π4)k}=(−1)k−1(k−1)!2i{(x−2ei3π4)k−(x−2e−i3π4)(x2+2x+2)k}f(n)(x)=arctan(x+1)(−1)nn!(x+2)n+1+12i∑k=1nCnk(−1)k−1(k−1)!×(x−2ei3π4)k−(x−2e−i3π4)k(x2+2x+2)k×(−1)n−k(n−k)!(x+2)n−k+1=(−1)nn!arctan(x+1)(x+2)n+1+(−1)n−1∑k=1nCnk(k−1)!Im{(x−2ei3π4)k}(x2+2x+2)k×(n−k)!(x+2)n−k+1 Commented by mathmax by abdo last updated on 29/Dec/19 f(n)(0)=π4(−1)nn!2n+1+(−1)n−1∑k=1nCnk(k−1)!(n−k)!2k×2n−k+1×Im{(−2)kei3kπ4}=π4(−1)nn!2n+1+(−1)n−1∑k=1nn!k!(n−k)!×(k−1)!(n−k!2n+1×(−2)ksin(3kπ4)=π4×(−1)nn!2n+1+(−1)n−12n+1∑k=1nn!k(−2)ksin(3kπ4) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Show-me-your-favorite-proofs-relating-to-pi-Next Next post: find-the-equation-of-the-circle-with-diameter-AB-where-A-is-at-2-4-and-B-is-at-1-6- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.