Menu Close

let-f-x-arctan-2-x-2-1-calculate-f-n-x-and-f-n-0-2-if-f-x-a-n-x-n-find-the-sequence-a-n-




Question Number 143381 by Mathspace last updated on 13/Jun/21
let f(x)=arctan((√2)x^2 )  1) calculate f^((n)) (x)and f^((n)) (0)  2)if f(x)=Σa_n x^n   find the   sequence a_n
letf(x)=arctan(2x2)1)calculatef(n)(x)andf(n)(0)2)iff(x)=Σanxnfindthesequencean
Answered by TheHoneyCat last updated on 13/Jun/21
  not in the right order, to make it more simple  ∀x∈]−1,1[  (1/(1−x)) = Σ_(n=0) ^∞ x^n   thus: (1/(1+x^2 ))=Σ_(n=0) ^∞ (−1)^n x^(2n)   knowing  that arctan′ = x→(1/(1+x^2 )) and that arctan(0)=0  arctan(x)=Σ_(n=0) ^∞ (((−1)^n )/(2n+1))x^(2n+1)   and therefor :  arctan((√2)x^2 )=2(√2)Σ_(n=0) ^∞ (((−1)^n )/(2n+1))x^(4n+2)      so ∀n∈N if n≡2[4]  a_n =(((−1)^((n−2)/4) )/(((n−2)/2)+1))  otherwise a_n =0    and ∀n∈N f^((n)) (0)=a_n     as for f^((n)) (x) I am quite not courageous enought  f^((0)) (x) =((2(√2)x)/(1+2x^4 ))  from that point on, one must use Leibnietz′s formula for the derivation of a product  (fg)^((n)) =Σ_(k=0) ^n  ((n),(k) )f^((n−k)) g^((k))   with f: x→2(√2)x and g:x→(1/(1+2x^2 ))    it obviously simplifies due to f′′=x→0  but like I said, I am not courrageous enougth    maybe there is a faster method  (for instance,  if you guess a solution, you only have to verify it with a recurence)  good luck to you with that last bit.
notintherightorder,tomakeitmoresimplex]1,1[11x=n=0xnthus:11+x2=n=0(1)nx2nknowingthatarctan=x11+x2andthatarctan(0)=0arctan(x)=n=0(1)n2n+1x2n+1andtherefor:arctan(2x2)=22n=0(1)n2n+1x4n+2sonNifn2[4]an=(1)n24n22+1otherwisean=0andnNf(n)(0)=anasforf(n)(x)Iamquitenotcourageousenoughtf(0)(x)=22x1+2x4fromthatpointon,onemustuseLeibnietzsformulaforthederivationofaproduct(fg)(n)=nk=0(nk)f(nk)g(k)withf:x22xandg:x11+2x2itobviouslysimplifiesduetof=x0butlikeIsaid,Iamnotcourrageousenougthmaybethereisafastermethod(forinstance,ifyouguessasolution,youonlyhavetoverifyitwitharecurence)goodlucktoyouwiththatlastbit.
Answered by mathmax by abdo last updated on 14/Jun/21
1)f(x)=arctan((√2)x^2 )⇒f^′ (x)=((2(√2)x)/(1+2x^4 ))=((2(√2)x)/(((√2)x^2 −i)((√2)x^2 +i)))  =((2(√2)x)/(2(x^2 −(i/( (√2))))(x^2 +(i/( (√2))))))=(((√2)x)/((x−(1/( (√(√2))))e^((iπ)/4) )(x+(1/( (√(√2))))e^((iπ)/4) )(x−(1/( (√(√2))))e^(−((iπ)/4)) )(x+(1/( (√(√2))))e^(−((iπ)/4)) )))  (λ=(1/( (√(√2)))))=(a/(x−λe^((iπ)/4) ))+(b/(x+λe^((iπ)/4) ))+(c/(x−λe^(−((iπ)/4)) )) +(d/(x+λ e^(−((iπ)/4)) ))  a=((λ(√2)e^((iπ)/4) )/(2λe^((iπ)/4) (λ^2 i+(i/( (√2))))))=(1/( (√2)(((2i)/( (√2))))))=(1/(2i))  its eazy to find other coefficient  ⇒f^((n)) (x)=((a(−1)^(n−1) (n−1)!)/((x−λe^((iπ)/4) )^n ))+((b(−1)^(n−1) (n−1)!)/((x+λe^((iπ)/4) )))  +((c(−1)^(n−1) (n−1)!)/((x−λe^(−((iπ)/4)) )^n )) +((d(−1)^(n−1) (n−1)!)/((x+λe^(−((iπ)/4)) )))  =(−1)^(n−1) (n−1)!{(a/((x−λe^((iπ)/4) )^n ))+(b/((x+λe^((iπ)/4) )^n ))+(c/((x−λe^(−((iπ)/4)) )^n ))  +(d/((x+λe^(−((iπ)/4)) )^n ))} ⇒  f^((n)) (0)=(−1)^(n−1) (n−1)!{((ae^(−((inπ)/4)) )/((−λ)^n ))+((be^(−((inπ)/4)) )/λ^n ) +((ce^((inπ)/4) )/((−λ)^n ))+(de^((inπ)/4) /λ^n )}  (λ=(1/((^4 (√2)))))  2)if f(x)=Σa_n x^n  ⇒a_n =((f^((n)) (0))/(n!))
1)f(x)=arctan(2x2)f(x)=22x1+2x4=22x(2x2i)(2x2+i)=22x2(x2i2)(x2+i2)=2x(x12eiπ4)(x+12eiπ4)(x12eiπ4)(x+12eiπ4)(λ=12)=axλeiπ4+bx+λeiπ4+cxλeiπ4+dx+λeiπ4a=λ2eiπ42λeiπ4(λ2i+i2)=12(2i2)=12iitseazytofindothercoefficientf(n)(x)=a(1)n1(n1)!(xλeiπ4)n+b(1)n1(n1)!(x+λeiπ4)+c(1)n1(n1)!(xλeiπ4)n+d(1)n1(n1)!(x+λeiπ4)=(1)n1(n1)!{a(xλeiπ4)n+b(x+λeiπ4)n+c(xλeiπ4)n+d(x+λeiπ4)n}f(n)(0)=(1)n1(n1)!{aeinπ4(λ)n+beinπ4λn+ceinπ4(λ)n+deinπ4λn}(λ=1(42))2)iff(x)=Σanxnan=f(n)(0)n!

Leave a Reply

Your email address will not be published. Required fields are marked *