let-f-x-arctan-2-x-2-1-calculate-f-n-x-and-f-n-0-2-if-f-x-a-n-x-n-find-the-sequence-a-n- Tinku Tara June 3, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 143381 by Mathspace last updated on 13/Jun/21 letf(x)=arctan(2x2)1)calculatef(n)(x)andf(n)(0)2)iff(x)=Σanxnfindthesequencean Answered by TheHoneyCat last updated on 13/Jun/21 notintherightorder,tomakeitmoresimple∀x∈]−1,1[11−x=∑∞n=0xnthus:11+x2=∑∞n=0(−1)nx2nknowingthatarctan′=x→11+x2andthatarctan(0)=0arctan(x)=∑∞n=0(−1)n2n+1x2n+1andtherefor:arctan(2x2)=22∑∞n=0(−1)n2n+1x4n+2so∀n∈Nifn≡2[4]an=(−1)n−24n−22+1otherwisean=0and∀n∈Nf(n)(0)=anasforf(n)(x)Iamquitenotcourageousenoughtf(0)(x)=22x1+2x4fromthatpointon,onemustuseLeibnietz′sformulaforthederivationofaproduct(fg)(n)=∑nk=0(nk)f(n−k)g(k)withf:x→22xandg:x→11+2x2itobviouslysimplifiesduetof″=x→0butlikeIsaid,Iamnotcourrageousenougthmaybethereisafastermethod(forinstance,ifyouguessasolution,youonlyhavetoverifyitwitharecurence)goodlucktoyouwiththatlastbit. Answered by mathmax by abdo last updated on 14/Jun/21 1)f(x)=arctan(2x2)⇒f′(x)=22x1+2x4=22x(2x2−i)(2x2+i)=22x2(x2−i2)(x2+i2)=2x(x−12eiπ4)(x+12eiπ4)(x−12e−iπ4)(x+12e−iπ4)(λ=12)=ax−λeiπ4+bx+λeiπ4+cx−λe−iπ4+dx+λe−iπ4a=λ2eiπ42λeiπ4(λ2i+i2)=12(2i2)=12iitseazytofindothercoefficient⇒f(n)(x)=a(−1)n−1(n−1)!(x−λeiπ4)n+b(−1)n−1(n−1)!(x+λeiπ4)+c(−1)n−1(n−1)!(x−λe−iπ4)n+d(−1)n−1(n−1)!(x+λe−iπ4)=(−1)n−1(n−1)!{a(x−λeiπ4)n+b(x+λeiπ4)n+c(x−λe−iπ4)n+d(x+λe−iπ4)n}⇒f(n)(0)=(−1)n−1(n−1)!{ae−inπ4(−λ)n+be−inπ4λn+ceinπ4(−λ)n+deinπ4λn}(λ=1(42))2)iff(x)=Σanxn⇒an=f(n)(0)n! Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: developp-at-fourier-serie-f-x-3-1-2cosx-by-use-of-two-methods-Next Next post: proof-tg-2-36-tg-2-72-5- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.