Menu Close

let-f-x-arctan-2-x-developp-f-at-integr-serie-




Question Number 140638 by Mathspace last updated on 10/May/21
let f(x)=arctan((2/x))  developp f at integr serie
letf(x)=arctan(2x)developpfatintegrserie
Answered by Dwaipayan Shikari last updated on 10/May/21
f(x)=f(0)+((f′(0))/(1!))x+((f′′(0))/(2!))x^2 +..  f(x)=tan^(−1) ((2/x))  f′(x)=−(2/x^2 ).(1/(1+(4/x^2 )))=((−2)/(x^2 +4))=(1/(2i))((1/((x+2i)))−(1/((x−2i))))  f′′(x)=−(1/(2i)).(1/((x+2i)^2 ))+(1/(2i)).(1/((x−2i)^2 ))  f^n (x)=(1/(2i))(−1)^(n+1) (n−1)!((1/((x+2i)^n ))−(1/((x−2i)^n )))  f^n (0)=(1/(2i))(−1)^(n+1) (n−1)!(1/2^n )(e^(−((πin)/2)) −e^((πin)/2) )=(((−1)^n sin(((πn)/2)))/2^n )n(n−1)!  tan^(−1) ((2/x))=(π/2)+Σ_(n=1) ^∞ (((−1)^n sin(((πn)/2))(n−1)!)/(2^n n!))x^n   =(π/2)+Σ_(n=1) ^∞ (((−1)^n sin(((πn)/2)))/(2^n n))x^n
f(x)=f(0)+f(0)1!x+f(0)2!x2+..f(x)=tan1(2x)f(x)=2x2.11+4x2=2x2+4=12i(1(x+2i)1(x2i))f(x)=12i.1(x+2i)2+12i.1(x2i)2fn(x)=12i(1)n+1(n1)!(1(x+2i)n1(x2i)n)fn(0)=12i(1)n+1(n1)!12n(eπin2eπin2)=(1)nsin(πn2)2nn(n1)!tan1(2x)=π2+n=1(1)nsin(πn2)(n1)!2nn!xn=π2+n=1(1)nsin(πn2)2nnxn
Answered by Dwaipayan Shikari last updated on 10/May/21
tan^(−1) ((2/x))=(π/2)−tan^(−1) ((x/2))=(π/2)−Σ_(n=0) ^∞ (((−1)^n )/((2n+1)))((x/2))^(2n+1)
tan1(2x)=π2tan1(x2)=π2n=0(1)n(2n+1)(x2)2n+1
Answered by mathmax by abdo last updated on 11/May/21
if x>0 ⇒f(x)=(π/2) −arctan((x/2)) we know  arctan^′ u =(1/(1+u^2 )) =Σ_(n=0) ^∞  (−1)^n u^(2n)   for ∣u∣<1  ⇒arctan(u) =Σ_(n=0) ^∞  (−1)^n  (u^(2n+1) /(2n+1)) ⇒  f(x)=(π/2)−Σ_(n=0) ^∞  (−1)^n  ((((x/2))^(2n+1) )/(2n+1))=(π/2)−Σ_(n=0) ^∞  (((−1)^n  x^(2n+1) )/((2n+1)2^(2n+1) ))  if x<0 ⇒f(x)=−(π/2)−arctan((x/2))  =−(π/2) −Σ_(n=0) ^∞ (((−1)^n  x^(2n+1) )/((2n+1)2^(2n+1) ))   with ∣x∣<2
ifx>0f(x)=π2arctan(x2)weknowarctanu=11+u2=n=0(1)nu2nforu∣<1arctan(u)=n=0(1)nu2n+12n+1f(x)=π2n=0(1)n(x2)2n+12n+1=π2n=0(1)nx2n+1(2n+1)22n+1ifx<0f(x)=π2arctan(x2)=π2n=0(1)nx2n+1(2n+1)22n+1withx∣<2

Leave a Reply

Your email address will not be published. Required fields are marked *