let-f-x-arctan-2-x-developp-f-at-integr-serie- Tinku Tara June 3, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 140638 by Mathspace last updated on 10/May/21 letf(x)=arctan(2x)developpfatintegrserie Answered by Dwaipayan Shikari last updated on 10/May/21 f(x)=f(0)+f′(0)1!x+f″(0)2!x2+..f(x)=tan−1(2x)f′(x)=−2x2.11+4x2=−2x2+4=12i(1(x+2i)−1(x−2i))f″(x)=−12i.1(x+2i)2+12i.1(x−2i)2fn(x)=12i(−1)n+1(n−1)!(1(x+2i)n−1(x−2i)n)fn(0)=12i(−1)n+1(n−1)!12n(e−πin2−eπin2)=(−1)nsin(πn2)2nn(n−1)!tan−1(2x)=π2+∑∞n=1(−1)nsin(πn2)(n−1)!2nn!xn=π2+∑∞n=1(−1)nsin(πn2)2nnxn Answered by Dwaipayan Shikari last updated on 10/May/21 tan−1(2x)=π2−tan−1(x2)=π2−∑∞n=0(−1)n(2n+1)(x2)2n+1 Answered by mathmax by abdo last updated on 11/May/21 ifx>0⇒f(x)=π2−arctan(x2)weknowarctan′u=11+u2=∑n=0∞(−1)nu2nfor∣u∣<1⇒arctan(u)=∑n=0∞(−1)nu2n+12n+1⇒f(x)=π2−∑n=0∞(−1)n(x2)2n+12n+1=π2−∑n=0∞(−1)nx2n+1(2n+1)22n+1ifx<0⇒f(x)=−π2−arctan(x2)=−π2−∑n=0∞(−1)nx2n+1(2n+1)22n+1with∣x∣<2 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: the-vector-equations-of-two-lines-L-1-and-L-2-is-given-by-L-1-r-i-j-3k-i-j-k-L-2-r-2i-aj-6k-2i-j-3k-where-a-are-real-constants-given-that-L-1-and-L-2-intersect-find-a-Next Next post: calculate-n-1-1-n-n-2-n-1-2n-1-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.