Question Number 140638 by Mathspace last updated on 10/May/21
$${let}\:{f}\left({x}\right)={arctan}\left(\frac{\mathrm{2}}{{x}}\right) \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$
Answered by Dwaipayan Shikari last updated on 10/May/21
$${f}\left({x}\right)={f}\left(\mathrm{0}\right)+\frac{{f}'\left(\mathrm{0}\right)}{\mathrm{1}!}{x}+\frac{{f}''\left(\mathrm{0}\right)}{\mathrm{2}!}{x}^{\mathrm{2}} +.. \\ $$$${f}\left({x}\right)={tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}}{{x}}\right) \\ $$$${f}'\left({x}\right)=−\frac{\mathrm{2}}{{x}^{\mathrm{2}} }.\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{4}}{{x}^{\mathrm{2}} }}=\frac{−\mathrm{2}}{{x}^{\mathrm{2}} +\mathrm{4}}=\frac{\mathrm{1}}{\mathrm{2}{i}}\left(\frac{\mathrm{1}}{\left({x}+\mathrm{2}{i}\right)}−\frac{\mathrm{1}}{\left({x}−\mathrm{2}{i}\right)}\right) \\ $$$${f}''\left({x}\right)=−\frac{\mathrm{1}}{\mathrm{2}{i}}.\frac{\mathrm{1}}{\left({x}+\mathrm{2}{i}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}{i}}.\frac{\mathrm{1}}{\left({x}−\mathrm{2}{i}\right)^{\mathrm{2}} } \\ $$$${f}^{{n}} \left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}{i}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \left({n}−\mathrm{1}\right)!\left(\frac{\mathrm{1}}{\left({x}+\mathrm{2}{i}\right)^{{n}} }−\frac{\mathrm{1}}{\left({x}−\mathrm{2}{i}\right)^{{n}} }\right) \\ $$$${f}^{{n}} \left(\mathrm{0}\right)=\frac{\mathrm{1}}{\mathrm{2}{i}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \left({n}−\mathrm{1}\right)!\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\left({e}^{−\frac{\pi{in}}{\mathrm{2}}} −{e}^{\frac{\pi{in}}{\mathrm{2}}} \right)=\frac{\left(−\mathrm{1}\right)^{{n}} {sin}\left(\frac{\pi{n}}{\mathrm{2}}\right)}{\mathrm{2}^{{n}} }{n}\left({n}−\mathrm{1}\right)! \\ $$$${tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}}{{x}}\right)=\frac{\pi}{\mathrm{2}}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {sin}\left(\frac{\pi{n}}{\mathrm{2}}\right)\left({n}−\mathrm{1}\right)!}{\mathrm{2}^{{n}} {n}!}{x}^{{n}} \\ $$$$=\frac{\pi}{\mathrm{2}}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {sin}\left(\frac{\pi{n}}{\mathrm{2}}\right)}{\mathrm{2}^{{n}} {n}}{x}^{{n}} \\ $$
Answered by Dwaipayan Shikari last updated on 10/May/21
$${tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}}{{x}}\right)=\frac{\pi}{\mathrm{2}}−{tan}^{−\mathrm{1}} \left(\frac{{x}}{\mathrm{2}}\right)=\frac{\pi}{\mathrm{2}}−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)}\left(\frac{{x}}{\mathrm{2}}\right)^{\mathrm{2}{n}+\mathrm{1}} \\ $$
Answered by mathmax by abdo last updated on 11/May/21
$$\mathrm{if}\:\mathrm{x}>\mathrm{0}\:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=\frac{\pi}{\mathrm{2}}\:−\mathrm{arctan}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\:\mathrm{we}\:\mathrm{know} \\ $$$$\mathrm{arctan}^{'} \mathrm{u}\:=\frac{\mathrm{1}}{\mathrm{1}+\mathrm{u}^{\mathrm{2}} }\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{u}^{\mathrm{2n}} \:\:\mathrm{for}\:\mid\mathrm{u}\mid<\mathrm{1} \\ $$$$\Rightarrow\mathrm{arctan}\left(\mathrm{u}\right)\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{\mathrm{n}} \:\frac{\mathrm{u}^{\mathrm{2n}+\mathrm{1}} }{\mathrm{2n}+\mathrm{1}}\:\Rightarrow \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\frac{\pi}{\mathrm{2}}−\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{\mathrm{n}} \:\frac{\left(\frac{\mathrm{x}}{\mathrm{2}}\right)^{\mathrm{2n}+\mathrm{1}} }{\mathrm{2n}+\mathrm{1}}=\frac{\pi}{\mathrm{2}}−\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \:\mathrm{x}^{\mathrm{2n}+\mathrm{1}} }{\left(\mathrm{2n}+\mathrm{1}\right)\mathrm{2}^{\mathrm{2n}+\mathrm{1}} } \\ $$$$\mathrm{if}\:\mathrm{x}<\mathrm{0}\:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=−\frac{\pi}{\mathrm{2}}−\mathrm{arctan}\left(\frac{\mathrm{x}}{\mathrm{2}}\right) \\ $$$$=−\frac{\pi}{\mathrm{2}}\:−\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \:\mathrm{x}^{\mathrm{2n}+\mathrm{1}} }{\left(\mathrm{2n}+\mathrm{1}\right)\mathrm{2}^{\mathrm{2n}+\mathrm{1}} }\:\:\:\mathrm{with}\:\mid\mathrm{x}\mid<\mathrm{2} \\ $$